期刊文献+
共找到32篇文章
< 1 2 >
每页显示 20 50 100
Hierarchical sulfur and nitrogen co-doped carbon nanocages as efficient bifunctional oxygen electrocatalysts for rechargeable Zn-air battery 被引量:5
1
作者 Hao Fan Yu Wang +8 位作者 Fujie Gao Longqi Yang Meng Liu Xiao Du Peng Wang Lijun Yang Qiang Wu Xizhang Wang Zheng Hu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第7期64-71,共8页
Exploring inexpensive and efficient bifunctional electrocatalysts for oxygen reduction reaction(ORR) and oxygen evolution reaction(OER) is critical for rechargeable metal-air batteries. Herein, we report a new 3D hier... Exploring inexpensive and efficient bifunctional electrocatalysts for oxygen reduction reaction(ORR) and oxygen evolution reaction(OER) is critical for rechargeable metal-air batteries. Herein, we report a new 3D hierarchical sulfur and nitrogen co-doped carbon nanocages(hSNCNC) as a promising bifunctional oxygen electrocatalyst by an in-situ MgO template method with pyridine and thiophene as the mixed precursor. The as-prepared h SNCNC exhibits a positive half-wave potential of 0.792 V(vs. reversible hydrogen electrode, RHE) for ORR, and a low operating potential of 1.640 V at a 10 mA cm-2 current density for OER. The reversible oxygen electrode index is 0.847 V, far superior to commercial Pt/C and IrO2,which reaches the top level of the reported bifunctional catalysts. Consequently, the hSNCNC as air cathodes in an assembled Zn-air battery features low charge/discharge overpotential and long lifetime. The remarkable properties arises from the introduced multiple heteroatom dopants and stable 3D hierarchical structure with multi-scale pores, which provides the abundant uniform high-active S and N species and efficient charge transfer as well as mass transportation. These results demonstrate the potential strategy in developing suitable carbon-based bi-/multi-functional catalysts to enable the next generation of the rechargeable metal-air batteries. 展开更多
关键词 3D HIERARCHICAL CARBOn nAnOCAGEs s n co-dopInG BIFUnCTIOnAL electrocatalysis Zn-air battery
下载PDF
Ultralong nitrogen/sulfur Co-doped carbon nano-hollowsphere chains with encapsulated cobalt nanoparticles for highly efficient oxygen electrocatalysis 被引量:6
2
作者 Wei Zhang Xingmei Guo +6 位作者 Cong Li Jiang-Yan Xue Wan-Ying Xu Zheng Niu Hongwei Gu Carl Redshaw Jian-Ping Lang 《Carbon Energy》 SCIE CSCD 2023年第8期15-30,共16页
The development of simple and effective strategies to prepare electrocatalysts,which possess unique and stable structures comprised of metal/nonmetallic atoms for oxygen reduction reaction(ORR)and oxygen evolution rea... The development of simple and effective strategies to prepare electrocatalysts,which possess unique and stable structures comprised of metal/nonmetallic atoms for oxygen reduction reaction(ORR)and oxygen evolution reaction(OER),is currently an urgent issue.Herein,an efficient bifunctional electrocatalyst featured by ultralong N,S-doped carbon nano-hollow-sphere chains about 1300 nm with encapsulated Co nanoparticles(Co-CNHSCs)is developed.The multifunctional catalytic properties of Co together with the heteroatom-induced charge redistribution(i.e.,modulating the electronic structure of the active site)result in superior catalytic activities toward OER and ORR in alkaline media.The optimized catalyst Co-CNHSC-3 displays an outstanding electrocatalytic ability for ORR and OER,a high specific capacity of 1023.6 mAh gZn^(-1),and excellent reversibility after 80 h at 10mA cm^(-2)in a Zn-air battery system.This work presents a new strategy for the design and synthesis of efficient multifunctional carbon-based catalysts for energy storage and conversion devices. 展开更多
关键词 Co nanoparticles n s co-doping oxygen electrocatalysts rechargeable Zn-air batteries ultralong carbon nano-hollow-sphere chains
下载PDF
Tuning interface mechanism of FeCo alloy embedded N,S-codoped carbon substrate for rechargeable Zn-air battery 被引量:1
3
作者 Hui Chang Lulu Zhao +4 位作者 Shan Zhao Zong-Lin Liu Peng-Fei Wang Ying Xie Ting-Feng Yi 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期400-410,I0010,共12页
The interface mechanism between catalyst and carbon substrate has been the focus of research.In this paper,the FeCo alloy embedded N,S co-doped carbon substrate bifunctional catalyst(FeCo/S-NC)is obtained by a simple ... The interface mechanism between catalyst and carbon substrate has been the focus of research.In this paper,the FeCo alloy embedded N,S co-doped carbon substrate bifunctional catalyst(FeCo/S-NC)is obtained by a simple one-step pyrolysis strategy.The experimental results and density functional theory(DFT)calculation show that the formation of FeCo alloy is conducive to promoting electron transfer,and the introduction of S atom can enhance the interaction between FeCo alloy and carbon substrate,thus inhibiting the migration and agglomeration of particles on the surface of carbon material.The FeCo/SNC catalysts show outstanding performance for oxygen reduction reaction(ORR)and oxygen evolution reaction(OER).FeCo/S-NC shows a high half-wave potential(E_(1/2)=0.8823 V)for ORR and a low overpotential at 10 mA cm^(-2)(E_(j=10)=299 mV)for OER.In addition,compared with Pt/C+RuO_(2) assembled Zn-air battery(ZAB),the FeCo/S-NC assembled ZAB exhibits a larger power density(198.8 mW cm^(-2)),a higher specific capacity(786.1 mA h g_(zn)~(-1)),and ultra-stable cycle performance.These results confirm that the optimized composition and the interfacial interaction between catalyst and carbon substrate synergistically enhance the electrochemical performance. 展开更多
关键词 FeCo alloy n s co-doped carbon DFT calculation Zn-air batteries Interfacial interaction
下载PDF
反应前驱物中n(S):n(Cd)对CdS薄膜结构及发光特性的影响
4
作者 赵湘辉 魏爱香 招瑜 《发光学报》 EI CAS CSCD 北大核心 2011年第8期793-797,共5页
采用化学水浴以CdCl2.H2O、CS(NH2)2、NH4Cl、NH3.H2O和去离子水作为反应前驱物制备CdS纳米晶薄膜。采用扫描电镜(SEM)、X射线衍射(XRD)、透射光谱和稳态荧光光谱,研究了反应前驱物中不同的n(S)∶n(Cd)对所制备的CdS薄膜的形貌、结构和... 采用化学水浴以CdCl2.H2O、CS(NH2)2、NH4Cl、NH3.H2O和去离子水作为反应前驱物制备CdS纳米晶薄膜。采用扫描电镜(SEM)、X射线衍射(XRD)、透射光谱和稳态荧光光谱,研究了反应前驱物中不同的n(S)∶n(Cd)对所制备的CdS薄膜的形貌、结构和光学性能的影响。结果表明:反应前驱物中n(S)∶n(Cd)≥3∶1时均能制备出由纳米颗粒组成的、具有立方晶系结构的CdS薄膜;CdS薄膜均为富镉的n型半导体,薄膜中的S/Cd原子比约为0.9∶1;CdS薄膜的吸收边在450 nm左右,在510~2 500 nm范围内透射率均在70%以上,在500 nm处有一较强的发光峰。 展开更多
关键词 化学水浴法 cds薄膜 n(s):n(cd) 光致发光
下载PDF
Interconnected carbon nanocapsules with high N/S co-doping as stable and high-capacity potassium-ion battery anode 被引量:6
5
作者 Honghui Bi Xiaojun He +3 位作者 Lei Yang Hongqiang Li Biyu Jin Jieshan Qiu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第3期195-204,I0007,共11页
Carbonaceous materials have drawn much attention in potassium-ion batteries (PIBs) due to their low price and superior physicochemical properties. However, the application of carbonaceous materials in PIB anodes is hi... Carbonaceous materials have drawn much attention in potassium-ion batteries (PIBs) due to their low price and superior physicochemical properties. However, the application of carbonaceous materials in PIB anodes is hindered by sluggish kinetics and large volume expansion. Herein, N/S co-doped carbon nanocapsule (NSCN) is constructed for superior K+ storage. The NSCN possesses 3D nanocapsule framework with abundant meso/macropores, which guarantees structural robustness and accelerates ions/electrons transportation. The high-level N/S co-doping in carbon matrix not only generates ample defects and active sites for K+ adsorption, but also expands interlayer distance for facile K+ intercalation/deintercalation. As a result, the NSCN electrode delivers a high reversible capacity (408 mAh g^(−1) at 0.05 A g^(−1)), outstanding rate capability (149 mAh g^(−1) at 5 A g^(−1)) and favorable cycle stability (150m Ah g^(−1) at 2 A g^(−1) after 2000 cycles). Ex situ TEM, Raman and XPS measurements demonstrate the excellent stability and reversibility of NSCN electrode during potassiation/depotassiation process. This work provides inspiration for the optimization of energy storage materials by structure and doping engineering. 展开更多
关键词 3D Carbon nanocapsules n/s co-doping Carbon anode Potassium-ion battery
下载PDF
Flexible Conductive Anodes Based on 3D Hierarchical Sn/NS-CNFs@rGO Network for Sodium-Ion Batteries 被引量:7
6
作者 Linqu Luo Jianjun Song +6 位作者 Longfei Song Hongchao Zhang Yicheng Bi Lei Liu Longwei Yin Fengyun Wang Guoxiu Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2019年第4期133-146,共14页
Metallic Sn has provoked tremendous progress as an anode material for sodium-ion batteries(SIBs).However,Sn anodes suffer from a dramatic capacity fading,owing to pulverization induced by drastic volume expansion duri... Metallic Sn has provoked tremendous progress as an anode material for sodium-ion batteries(SIBs).However,Sn anodes suffer from a dramatic capacity fading,owing to pulverization induced by drastic volume expansion during cycling.Herein,a flexible three-dimensional(3D)hierarchical conductive network electrode is designed by constructing Sn quantum dots(QDs)encapsulated in one-dimensional N,S codoped carbon nanofibers(NS-CNFs)sheathed within two-dimensional(2D)reduced graphene oxide(rGO)scrolls.In this ingenious strategy,1D NS-CNFs are regarded as building blocks to prevent the aggregation and pulverization of Sn QDs during sodiation/desodiation,2D rGO acts as electrical roads and“bridges”among NS-CNFs to improve the conductivity of the electrode and enlarge the contact area with electrolyte.Because of the unique structural merits,the flexible 3D hierarchical conductive network was directly used as binder-and current collectorfree anode for SIBs,exhibiting ultra-long cycling life(373 mAh g?1 after 5000 cycles at 1 A g?1),and excellent high-rate capability(189 mAh g?1 at 10 A g?1).This work provides a facile and efficient engineering method to construct 3D hierarchical conductive electrodes for other flexible energy storage devices. 展开更多
关键词 FLEXIBLE electrodes n s co-doped carbon nanofibers Reduced graphene oxide sn quantum DOTs sodium-ion batteries
下载PDF
Step-scheme porous g-C3N4/Zn0.2Cd0.8S-DETA composites for efficient and stable photocatalytic H2 production 被引量:11
7
作者 Feifei Mei Zhen Li +2 位作者 Kai Dai Jinfeng Zhang Changhao Liang 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2020年第1期41-49,共9页
In recent years,environmental pollution and energy crisis have become increasingly serious issues owing to the burning of fossil fuels.Among the many technologies,decomposition of water to produce hydrogen has attract... In recent years,environmental pollution and energy crisis have become increasingly serious issues owing to the burning of fossil fuels.Among the many technologies,decomposition of water to produce hydrogen has attracted much attention because of its sustainability and non-polluting characteristic.However,highly efficient decomposition of water that is driven by visible light is still a challenge.Herein,we report the large-scale preparation of step-scheme porous graphite carbon nitride/Zn0.2Cd0.8S-diethylenetriamine(Pg-C3N4/Zn0.2Cd0.8S-DETA)composite by a facile solvothermal method.It was found by UV-vis spectroscopy that 15%Pg-C3N4/Zn0.2Cd0.8S-DETA exhibited suitable visible absorption edge and band gap for water decomposition.The hydrogen production rate of 15%Pg-C3N4/Zn0.2Cd0.8S-DETA composite was 6.69 mmol g^-1 h^-1,which was 16.73,1.61,and 1.44 times greater than those of Pg-C3N4,CdS-DETA,and Zn0.2Cd0.8S-DETA,respectively.In addition,15%Pg-C3N4/Zn0.2Cd0.8S-DETA composite displayed excellent photocatalytic stability,which was maintained for seven cycles of photocatalytic water splitting test.We believe that 15%Pg-C3N4/Zn0.2Cd0.8S-DETA composite can be a valuable guide for the development of solar hydrogen production applications in the near future. 展开更多
关键词 Pg-C3n4 Zn0.2cd0.8s DIETHYLEnETRIAMInE Photocatalysis step-scheme porous composite
下载PDF
N,S-CDs的制备及在检测生物硫醇方面的应用
8
作者 邱国峰 王昆 +3 位作者 沈言超 朱文友 盛风涛 田林 《材料导报》 EI CAS CSCD 北大核心 2018年第A02期191-194,共4页
以柠檬酸和硫脲为碳源,采用固相合成法一步制备共掺杂碳点,该氮、硫共掺杂碳点在440nm处发射强荧光(λex=361nm),相对荧光量子产率为23.69%。研究发现,当Hg2+存在时,其水溶液能发生明显的荧光淬灭。向N,S-CDs溶液中加入不同浓度的Hg2+... 以柠檬酸和硫脲为碳源,采用固相合成法一步制备共掺杂碳点,该氮、硫共掺杂碳点在440nm处发射强荧光(λex=361nm),相对荧光量子产率为23.69%。研究发现,当Hg2+存在时,其水溶液能发生明显的荧光淬灭。向N,S-CDs溶液中加入不同浓度的Hg2+标准溶液后,通过线性拟合曲线求出最低检出限为34.2nmol/L;由于生物硫醇可以很好地结合Hg2+,所以向N,SCDs-Hg2+体系中加入谷胱甘肽(GSH)或半胱氨酸(Cys),可观察到溶液的荧光明显恢复。基于此本文设计了一种"on-off-on"荧光探针用于GSH和Cys的检测,最低检出限分别能达到27nmol/L和15nmol/L。 展开更多
关键词 n s-cds 金属离子 生物硫醇
下载PDF
配位聚合物[Cd(S_2CO-n-C_4H_9)_2]_n的合成和晶体结构 被引量:1
9
作者 蒋旭红 章伟光 +1 位作者 钟昀 王素兰 《江西农业大学学报》 CAS CSCD 2002年第4期544-546,共3页
报道了正丁基黄原酸钠与硝酸镉形成的二维网状聚合物 [Cd(S2 CO -n -C4H9) 2 ]n 的合成与结构。该配合物属单斜晶系 ,空间群P2 (1) /c,晶胞参数 :a =2 .5 6 4 9(4)nm ,b=0 .5 810 (7)nm ,c=1.1348(41)nm ,β=10 1.70 1(2 ) 0 ,V =1.6 5 ... 报道了正丁基黄原酸钠与硝酸镉形成的二维网状聚合物 [Cd(S2 CO -n -C4H9) 2 ]n 的合成与结构。该配合物属单斜晶系 ,空间群P2 (1) /c,晶胞参数 :a =2 .5 6 4 9(4)nm ,b=0 .5 810 (7)nm ,c=1.1348(41)nm ,β=10 1.70 1(2 ) 0 ,V =1.6 5 6 6 (4)nm3 ,Z =4 ,Dc =1.6 4 7mg/m3 ,F(0 0 0 ) =82 4 ,R1=0 .0 711,wR2 =0 .175 5。 展开更多
关键词 配位聚合物 [cd(s2CO-n-C4H9)2]n 合成 晶体结构 黄原酸盐 镉配合物
下载PDF
Self-assembled three-dimensional carbon networks with accessorial Lewis base sites and variational electron characteristics as efficient oxygen reduction reaction catalysts for alkaline metal-air batteries
10
作者 Qiyu Wang Zhian Zhang +3 位作者 Mengran Wang Jie Li Jing Fang Yanqing Lai 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2018年第7期1210-1218,共9页
Heteroatom-doped carbon has been demonstrated to be one of the most promising non-noble metal catalysts with high catalytic activity and stability through the modification of the electronic and geometric structures.In... Heteroatom-doped carbon has been demonstrated to be one of the most promising non-noble metal catalysts with high catalytic activity and stability through the modification of the electronic and geometric structures.In this study,we develop a novel solvent method to prepare interconnected N,S co-doped three-dimensional(3D)carbon networks with tunable nanopores derived from an asso-ciated complex based on melamine and sodium dodecylbenzene sulfonate(SDBS).After the intro-duction of silica templates and calcination,the catalyst exhibits 3D networks with interconnected 50-nm pores and partial graphitization.With the increase of the number of Lewis base sites caused by the N doping and change of the carbon charge and spin densities caused by the S doping,the designed N,S co-doped catalyst exhibits a similar electrochemical activity to that of the commercial 20-wt%Pt/C as an oxygen reduction reaction catalyst.In addition,in an aluminum-air battery,the proposed catalyst even outperforms the commercial 5-wt%Pt/C catalyst.Both interconnected porous structures and synergistic effects of N and S contribute to the superior catalytic perfor-mance.This study paves the way for the synthesis of various other N-doped and co-doped carbon materials as efficient catalysts in electrochemical energy applications. 展开更多
关键词 Carbon networks n s co-doped Lewis base sites Charge and spin densities Oxygen reduction reaction Alkaline metal-air batteries
下载PDF
Revisiting N,S co-doped carbon materials with boosted electrochemical performance in sodium-ion capacitors:The manipulation of internal electric field 被引量:1
11
作者 Shuli Li Jinqiang Zhang +2 位作者 Yanan Li Pengxiang Fan Mingbo Wu 《Nano Research Energy》 2024年第1期10-18,共9页
Heteroatom doping has emerged as a prevailing strategy to enhance the storage of sodium ions in carbon materials.However,the underlying mechanism governing the performance enhancement remains undisclosed.Herein,we fab... Heteroatom doping has emerged as a prevailing strategy to enhance the storage of sodium ions in carbon materials.However,the underlying mechanism governing the performance enhancement remains undisclosed.Herein,we fabricated N/S co-doped carbon beaded fibers(S-N-CBFs),which exhibited glorious rate performance and durableness in Na+storage,showcasing no obvious capacity decay even after 3500 cycles.Furthermore,when used as anodes in sodium-ion capacitors,the S-N-CBFs delivered exceptional results,boasting a high energy density of 225 Wh·kg^(-1),superior power output of 22500 W·kg^(-1),and outstanding cycling stability with a capacity attenuation of merely 0.014%per cycle after 4000 cycles at 2 A·g^(-1).Mechanistic investigations revealed that the incorporation of both pyridinic N and pyrrolic N into the carbon matrix of S-N-CBFs induced internal electric fields(IEFs),with the former IEF being stronger than the latter,in conjunction with the doped S atom.Density functional theory calculations further unveiled that the intensity of the IEF directly influenced the adsorption of Na+,thereby resulting in the exceptional performances of S-N-CBFs as sodium-ion storage materials.This work uncovers the pivotal role of IEF in regulating the electronic structure of carbon materials and enhancing their Na^(+)storage capabilities,providing valuable insights for the development of more advanced electrode materials. 展开更多
关键词 n/s co-doped carbon internal electric field na^(%PLUs%)adsorption sodium-ion storage sodium-ion capacitors
原文传递
Fabrication of N,S co-doped porous carbon nanofibers as anode material for sodium-ion batteries with high performance
12
作者 LIU Shipeng YE Tingjuan +1 位作者 SUN Zhonghui GUAN Hongyu 《分子科学学报》 CAS 2024年第4期371-376,共6页
The N,S co-doped porous carbon nanofibers were fabricated by the carbonization of[Zn_(2)(tdc)_(2)(MA)]n MOFs/polyacrylonitrile nanofibers composite,which was produced by the electrospinning technology.The electrochemi... The N,S co-doped porous carbon nanofibers were fabricated by the carbonization of[Zn_(2)(tdc)_(2)(MA)]n MOFs/polyacrylonitrile nanofibers composite,which was produced by the electrospinning technology.The electrochemical results show that the N,S co-doped porous carbon nanofibers can achieve capacity of 201.2 mAh·g^(-1)at the current density of 0.05 A·g^(-1).Furthermore,the reversible capacity still has 161.3 mAh·g^(-1)even at a high current density of 1 A·g^(-1)after 600 cycles.The superior electrochemical performance shows that the N,S co-doped porous carbon nanofibers electrode material can be used as an ideal anode material for sodium-ion batteries. 展开更多
关键词 sodium-ion battery ELECTROsPInnInG [Zn_(2)(tdc)_(2)(MA)]nMOFs n s co-doped porous carbon nanofibers
原文传递
水热法制备S、N共掺杂碳点及其银离子的荧光检测 被引量:3
13
作者 白静静 胡国胜 +3 位作者 张静婷 刘冰肖 王玉龙 李振中 《光子学报》 EI CAS CSCD 北大核心 2019年第4期87-95,共9页
以通过氢键形成分子单元的异硫氰酸胍为掺杂剂,采用一锅水热法制备了具有明亮蓝色荧光的S、N共掺杂碳点.结构表征显示,N和S元素能够通过杂环原子和碳点表面官能团的形式充分掺杂.该碳点溶液的光致发光最佳激发波长为395nm,对应发射谱从&... 以通过氢键形成分子单元的异硫氰酸胍为掺杂剂,采用一锅水热法制备了具有明亮蓝色荧光的S、N共掺杂碳点.结构表征显示,N和S元素能够通过杂环原子和碳点表面官能团的形式充分掺杂.该碳点溶液的光致发光最佳激发波长为395nm,对应发射谱从"激发独立"变为"激发依赖".在碳点的形成过程中,出现了一些分子级荧光团,随着碳化过程以表面官能团的形式键合在碳点的表面,这为该碳点作为银离子检测的传感探针提供了可能.碳点溶液荧光强度和银离子浓度在不同浓度范围内成线性关系,基团-S-C≡N能够促进银离子对碳点溶液荧光的猝灭效应.该碳点溶液制备方法简单、性能优异,为高效检测工业污染物中银离子的应用提供了一种可能的途径. 展开更多
关键词 s n共掺杂碳点 异硫氰酸胍 Ag%PLUs% 猝灭机制 -s-C≡n
下载PDF
Edge-enriched N, S co-doped hierarchical porous carbon for oxygen reduction reaction
14
作者 Fangfang Chang Panpan Su +5 位作者 Utsab Guharoy Runping Ye Yanfu Ma Huajun Zheng Yi Jia Jian Liu 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第2期349-354,共6页
The development of carbon materials with high electrochemical performance for next-generation energy device is emerging, especially N, S co-doped carbon materials have sparked intensive attention. However,the explorat... The development of carbon materials with high electrochemical performance for next-generation energy device is emerging, especially N, S co-doped carbon materials have sparked intensive attention. However,the exploration of N, S co-doped carbon with well-defined active sites and hierarchical porous structures are still limited. In this study, we prepared a series of edge-enriched N, S co-doped carbon materials through pyrolysis of thiourea(TU) encapsulated in zeolitic imidazolate frameworks(TU@ZIF) composites,which delivered very good oxygen reduction reaction(ORR) performance in alkaline medium with onset potential of 0.94 V vs. reversible hydrogen electrode(RHE), good stability and methanol tolerance. Density functional theory(DFT) calculations suggested that carbon atoms adjacent to N and S are probable active sites for ORR intermediates in edge-enriched N, S co-doped carbon materials because higher electron density can enhance O_(2)adsorption, lower formation barriers of intermediates, improving the ORR performance comparing to intact N, S co-doped carbon materials. This study might provide a new pathway for improving ORR activity by the integration engineering of edge sites, and electronic structure of heteroatom doped carbon electrocatalysts. 展开更多
关键词 Porosity engineering n s co-doped carbon materials Hierarchical porous carbon Edge-enriched carbon Oxygen reduction reaction DFT calculation
原文传递
Cubic S/N co-doped TiO_(2) with rich oxygen vacancies from Ti-MOFs for efficient elimination of formaldehyde
15
作者 Qing Gao Lei Sun +1 位作者 Zhihua Wang Jiguang Deng 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第2期512-515,共4页
The cubic S/N co-doped TiO_(2)(TNSx,x is the calcination temperature)photocatalysts with rich oxygen vacancies were obtained by high temperature calcination of sulfur powder and titanium-based MOFs NH_(2)-MIL-125 for ... The cubic S/N co-doped TiO_(2)(TNSx,x is the calcination temperature)photocatalysts with rich oxygen vacancies were obtained by high temperature calcination of sulfur powder and titanium-based MOFs NH_(2)-MIL-125 for the photocatalytic removal of gaseous formaldehyde(a volatile organic compound).Among the obtained catalysts,the presence of oxygen vacancies restricted photogenerated electron and holes recombination.98.00%removal of gaseous formaldehyde in 150 min could be achieved over TNS600 by xenon lamp.The removal efficiency for formaldehyde was well retained for five cycle experiment.The results from PL,TRPL and EIS revealed that TNS600 had the best separation efficiency of photogenerated electrons and holes,and the enhanced charge separation led to a significant increase in photocatalytic activity.The photocatalytic oxidation mechanism indicated that the ^(•)OH and ^(•)O_(2)−radicals were mainly involved in the efficient elimination of gaseous formaldehyde and were able to mineralize formaldehyde to H_(2)O and CO_(2). 展开更多
关键词 Metal-organic frameworks PHOTOCATALYsIs Formaldehyde removal s/n co-doped TiO_(2) Oxygen vacancies
原文传递
Peroxymonosulfate activation by Fe-N-S co-doped tremella-like carbocatalyst for degradation of bisphenol A: Synergistic effect of pyridine N, Fe-Nx, thiophene S 被引量:1
16
作者 Wenjin Chen Lele Lei +6 位作者 Ke Zhu Dongdong He Hongmei He Xiulan Li Yumeng Wang Jin Huang Yushi Ai 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2023年第7期213-228,共16页
Bisphenol A(BPA)has received increasing attention due to its long-term industrial application and persistence in environmental pollution.Iron-based carbon catalyst activation of peroxymonosulfate(PMS)shows a good pros... Bisphenol A(BPA)has received increasing attention due to its long-term industrial application and persistence in environmental pollution.Iron-based carbon catalyst activation of peroxymonosulfate(PMS)shows a good prospect for effective elimination of recalcitrant contaminants in water.Herein,considering the problem about the leaching of iron ions and the optimization of heteroatoms doping,the iron,nitrogen and sulfur co-doped tremellalike carbon catalyst(Fe-NS@C)was rationally designed using very little iron,S-C_(3)N_(4) and low-cost chitosan(CS)via the impregnation-calcination method.The as-prepared Fe-NS@C exhibited excellent performance for complete removal of BPA(20 mg/L)by activating PMS with the high kinetic constant(1.492 min^(−1))in 15 min.Besides,the Fe-NS@C/PMS system not only possessed wide pH adaptation and high resistance to environmental interference,but also maintained an excellent degradation efficiency on different pollutants.Impressively,increased S-C_(3)N_(4) doping amount modulated the contents of different N species in Fe-NS@C,and the catalytic activity of Fe-NS@C-1-x was visibly enhanced with increasing SC_(3)N_(4) contents,verifying pyridine N and Fe-Nx as main active sites in the system.Meanwhile,thiophene sulfur(C-S-C)as active sites played an auxiliary role.Furthermore,quenching experiment,EPR analysis and electrochemical test proved that surface-bound radicals(·OH and SO_(4)^(·−))and non-radical pathways worked in the BPA degradation(the former played a dominant role).Finally,possible BPA degradation route were proposed.This work provided a promising way to synthesize the novel Fe,N and S co-doping carbon catalyst for degrading organic pollutants with low metal leaching and high catalytic ability. 展开更多
关键词 Iron nitrogen and sulfur co-doped PEROXYMOnOsULFATE Bisphenol A Pyridine n Fe-n_(x)sites Thiophene s
原文传递
Sulfur–nitrogen co-doped graphene supported cobalt–nickel sulfide rGO@SN-CoNi_(2)S_(4) as highly efficient bifunctional catalysts for hydrogen/oxygen evolution reactions 被引量:5
17
作者 Bing-Lu Deng Li-Ping Guo +2 位作者 Yuan Lu Hai-Bo Rong Dong-Chu Cheng 《Rare Metals》 SCIE EI CAS CSCD 2022年第3期911-920,共10页
Designing highly active and stable electrocata-lysts for hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)is a challenge for energy con-version and storage technology.In this work,a S and N co-doped g... Designing highly active and stable electrocata-lysts for hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)is a challenge for energy con-version and storage technology.In this work,a S and N co-doped graphene supported cobalt–nickel sulfide composite catalyst(rGO@SN-CoNi_(2)S_(4))was synthesized simply via a one-step hydrothermal method.The as-synthesized CoNi_(2)S_(4)particles grew in a mosaic manner inside GO lamellae and were encapsulated with graphene.As a bifunctional catalyst,the r GO@SN-CoNi_(2)S_(4)exhibits excellent electrocatalytic performance under alkaline con-ditions,which only required the overpotential of 142.6 mV(vs.RHE)and 310 m V(vs.RHE)to deliver a current density of 10 mA·cm^(-2) for HER and OER,respectively.The good hydrophilicity of the r GO@SN,the pure phase of bimetallic structure,and the chemical coupling/interaction between the CoNi_(2)S_(4)and the rGO@SN are attributable to be the possible reasons responsible for the higher HER and OER catalytic activities.Additionally,the rGO@SN-CoNi_(2)S_(4)also shows a great potential for serving as an excellent cathode and anode electrolyzer during the water splitting process. 展开更多
关键词 Hydrogen evolution reaction Oxygen evolution reaction s and n co-doped grapheme Cobalt–nickel sulfide Water splitting
原文传递
N/S co-doped carbon nanosheet bundles as high-capacity anode for potassium-ion battery 被引量:1
18
作者 Jinhui Cao Jiang Zhong +9 位作者 Hanjiao Xu Shengyang Li Hongli Deng Tao Wang Ling Fan Xinghui Wang Lei Wang Jian Zhu Bingan Lu Xidong Duan 《Nano Research》 SCIE EI CSCD 2022年第3期2040-2046,共7页
Potassium-ion batteries(PIBs)are of academic and economic significance,but still limited by the lack of highly active electrode materials for de-/intercalation of large-radius K ions.Herein,an interconnected nitrogen/... Potassium-ion batteries(PIBs)are of academic and economic significance,but still limited by the lack of highly active electrode materials for de-/intercalation of large-radius K ions.Herein,an interconnected nitrogen/sulfur co-doped carbon nanosheep bundle(N/S-CSB)was proposed as the potassium ions storage material.The rich co-doping of nitrogen/sulfur of N/S-CNB with three-dimensional hierarchical bundled array structure yields distensible interlayer spaces to buffer the volume expansion during K+insertion/extraction,offers more electrochemical active sites to obtain a high specific capacity,and provides efficient channels for fast ion/electron transports.Therefore,the N/S-CSB anode achieved high reversible specific capacity of 365 mAh/g obtained at 50 mA/g after 200 cycles with a coulombic efficiency(CE)close to 100%,high rate performance and long cycle stability.Moreover,the in-situ Raman spectra indicated outstanding reaction kinetics of as-prepared N/S-CSB anode. 展开更多
关键词 potassium-ion battery AnODE carbon nanosheet bundles n/s co-doping high capacity long cycle
原文传递
In-situ synthesis of N, S co-doped hollow carbon microspheres for efficient catalytic oxidation of organic contaminants 被引量:1
19
作者 Yongbing Xie Ya Liu +3 位作者 Yujie Yao Yanchun Shi Binran Zhao Yuxian Wang 《Chinese Chemical Letters》 SCIE CAS CSCD 2022年第3期1298-1302,共5页
Metal-free heteroatom doped nanocarbons are promising alternatives to the metal-based materials in catalytic ozonation for destruction of aqueous organic contaminants. In this study, N, S co-doped hollow carbon micros... Metal-free heteroatom doped nanocarbons are promising alternatives to the metal-based materials in catalytic ozonation for destruction of aqueous organic contaminants. In this study, N, S co-doped hollow carbon microspheres (NSCs) were synthesized from the polymerization products during persulfate wet air oxidation of benzothiazole. The contents of doped N and S as well as the structural stability were maneuvered by adjusting the subsequent N_(2)-annealing temperature. Compared with the prevailing single-walled carbon nanotubes, the N_(2)-annealed NSCs demonstrated a higher catalytic ozonation activity for benzimidazole degradation. According to the quantitative structure-activity relationship (QSAR) analysis, the synergistic effect between the graphitic N and the thiophene-S which redistributed the charge distribution of the carbon basal plane contributed to the activity enhancement of the N_(2)-annealed NSCs. Additionally, the hollow structure within the microspheres served as the microreactor to boost the mass transfer and reaction kinetics via the nanoconfinement effects. Quenching and electron paramagnetic resonance (EPR) tests revealed that benzimidazole degradation was dominated by the produced singlet oxygen (^(1)O_(2)) species, while hydroxyl radicals (^(·)OH) were also generated and participated. This study puts forward a novel strategy for synthesis of heteroatom-doped nanocarbons and sheds a light on the relationship between the active sites on the doped nanocarbons and the catalytic performance. 展开更多
关键词 Metal-free catalysis Hollow carbon microspheres n s co-doping Catalytic ozonation singlet oxygen(1O_(2))
原文传递
Interfacial growth of N,S-codoped mesoporous carbon onto biomass-derived carbon for superior potassium-ion storage 被引量:1
20
作者 Na Huang Cheng Tang +3 位作者 Hao Jiang Jie Sun Aijun Du Haijiao Zhang 《Nano Research》 SCIE EI CSCD 2024年第4期2619-2627,共9页
Carbonaceous materials have been recognized as one of the most promising anode materials for potassium-ion batteries(PIBs)due to their abundant raw materials,controllable structure,superior conductivity,and good chemi... Carbonaceous materials have been recognized as one of the most promising anode materials for potassium-ion batteries(PIBs)due to their abundant raw materials,controllable structure,superior conductivity,and good chemical inertness.However,the large radius of K ions and the low potassium content of intercalation compounds result in the sluggish storage kinetics and low reversible capacity of carbon anodes.In this work,we present a unique heteroatom-doped carbon composite(denoted as NS-MC/SC)through a facile interfacial assembly route and simple heat-treatment process,where NS-MC is well grafted onto the biomass-derived spore carbon(SC).This unique structural design endows it with abundant mesoporous channels,expanded layer spacing,and highly doped N and S.With these merits,the NS-MC/SC anode in PIBs exhibits a high reversible capacity of 350.4 mAh·g^(-1) at 100 mA·g^(-1) after 300 cycles,and an outstanding cycling stability.Besides,in-situ Raman spectra further verify the high reversibility of K ions insertion/extraction.Importantly,theoretical simulations also reveal that the N,S dual-doping is an efficient approach for improving the potassium-ion storage performance of NS-MC/SC. 展开更多
关键词 mesoporous carbon(MC) biomass-derived carbon(BC) n s co-doping interfacial assembly potassium-ion batteries(PIBs)
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部