Study of horizontal and vertical distributions of the N/P (nitrogen versus phosphate) atom ratio in the northern South Yellow Sea showed that the ratio varied greatly in upper waters of the investigated area and was a...Study of horizontal and vertical distributions of the N/P (nitrogen versus phosphate) atom ratio in the northern South Yellow Sea showed that the ratio varied greatly in upper waters of the investigated area and was always much greater than the theoretical Redfield ratio of 16:1 found below the thermocline zone. It was in general higher near the coast and lower in the central part. With increasing depth, the ratio became smaller and smaller. This distribution pattern is attributed to: 1) the anthropogenic influence of the surface N and P which makes the N/P ratio differ from the normal value; 2) the easy adsorption of P on particles hinders P transport to the central part; 3) below the thermocline zone, the N and P mainly come from the remineralization of the sedimented phytoplankton residues which have almost the theoretical Redfield value and; 4) the existence of the Yellow Sea Bottom Cold Water which inhibits the vertical exchange of the water.展开更多
The differences in nitrogen/phosphorus(N/P)ratios of different functional groups in ecology are more helpful in explaining species competition and community dynamics.Based on the functional groups of plant growth type...The differences in nitrogen/phosphorus(N/P)ratios of different functional groups in ecology are more helpful in explaining species competition and community dynamics.Based on the functional groups of plant growth type,carbon metabolism pathway,root type and phylogenetic type,we analyzed characteristics of leaf N/P ratios of 77 species in Sanggendalai(typical grassland zone)of Zhenglan Banner,Inner Mongolia,China and 91 species in the Habahu National Nature Reserve(desertified grassland zone)in Yanchi County of Ningxia,China.The results show that the N/P ratio(16.91)of C3 plants in the desertified steppe was significantly larger than that(12.72)in the typical steppe,but there was no significant difference between the N/P ratios of C4 plants in the two zones.There was no significant difference in N/P ratios between C3 plants and C4 plants in the same zone.Similarly,the N/P ratio(16.60)of dicotyledons in desertified steppe were significantly higher than that(12.98)in typical steppe,while differences in N/P ratios between monocotyledonous plants of the two zones was not significant,and there existed no significant difference in N/P ratios between dicotyledonous and monocotyledonous plants in the same zone.The N/P ratio had significant difference between gramineous and non-gramineous plants in the typical steppe but not in the desertified steppe,but there existed no significant difference in N/P ratios among different root types of perennial herbaceous plants in the same type of steppe or between two types of steppe.Thus,different features on the N/P ratios of C3 plants and dicotyledonous plants between typical steppe and desertified steppe may lead to different growth status of plants,and the N/P ratio stoichiometric of the same plant functional group may be a foundation of the changes of a plant community.展开更多
Interactions between Skeletonema costatum (S. costatum) and Prorocentrum donghaiense (P. donghaiiense) were inves-tigated using bi-algal cultures at different concentrations of phosphate (PO4-P) and nitrate/phosphate ...Interactions between Skeletonema costatum (S. costatum) and Prorocentrum donghaiense (P. donghaiiense) were inves-tigated using bi-algal cultures at different concentrations of phosphate (PO4-P) and nitrate/phosphate (N/P) ratios. Experiments were conducted under P-limited conditions and the Lotka-Volterra mathematical model was used to simulate the growth of S. costatum and P. donghaiense in the bi-algal cultures. Both of these two species were inhibited significantly in bi-algal culture. The results of the simulation showed that the inhibitory degree of S. costaum by P. donghaiense was high when the concentration of PO4-P was low (0.1μmolL-1/2 d), but that of P. donghaiense by S. costaum was high with increased PO4-P supply (0.6μmolL-1/2 d). At low concen-tration of PO4-P (0.1μmolL-1/2 d), or high concentration of PO4-P (0.6μmolL-1/2 d) with high N/P ratio (160), the interactions be-tween S. costatum and P. donghaiense were dependent on the initial cell densities of both species. At high concentration of PO4-P (0.6μmolL-1/2 d) with low N/P ratio (25 or 80), S. costatum exhibited a survival strategy superior to that of P. donghaiense. The de-gree of inhibition of P. donghaiense by S. costaum increased with elevated N/P ratio when the medium was supplemented with con-centration 0.1μmolL-1/2 d of PO4-P. The degree of inhibition to P. donghaiense by S. costaum increased with elevated N/P ratio at low concentration of PO4-P (0.1 μmolL-1/2 d). This trend was conversed at high concentration of PO4-P (0.6μmolL-1/2 d). However, the degree of inhibition of S. costaum by P. donghaiense increased with the increased N/P ratio at different PO4-P concentrations (0.1μmolL-1/2 d and 0.6μmolL-1/2 d). These results suggested that both phosphate concentration and N/P ratio affected the competition between S. costaum and P. donghaiense: P. donghaiense is more competitive in environments with low phosphate or high N/P ratio and the influence of N/P ratio on the competition was more significant with lower phosphate concentration.展开更多
In order to examine the causes of degradation of Pinus sylvestris var. mongolica plantations on sandy land, the foliar concentrations of N, P, K and C were analyzed and compared between the field grown P. sylvestris v...In order to examine the causes of degradation of Pinus sylvestris var. mongolica plantations on sandy land, the foliar concentrations of N, P, K and C were analyzed and compared between the field grown P. sylvestris var. mongolica trees from two provenances (natural forests and plantations). The results indicated that natural tree needles had lower N, P and C concentrations, and higher K concentrations than those of plantation tree needles. For plantation tree needles, ratios of N: P, P. K and N: K increased with tree age before 45 years old; but they were not clear for the natural tree needles. Compared with the conclusions reported on Pinus spp., we found that the foliar N and P concentrations were in the optimal range for both natural and plantation tree needles. This result suggested that N or P might not be the absolute limit factors in plant nutrient for P sylvestris var. mongolica on sandy land. However, foliar K concentrations in both natural and plantation tree needles were much lower than those reported on Pinus spp. (〉4.80 g kg-1).The N: P ratio of natural needles was in the adequate ranges, but N: P ratio of plantation needles was out of the adequate ranges. These results indicated that there was a better balanced nutrition status in the natural forest than in the plantations. If only considering the foliar nutrient concentrations of P sylvestris var. mongolica from different provenances, it might be concluded that the degradation phenomenon of P. sylvestris var. mongolica plantations was not induced by nutrition deficiency of absolute nutrients of N and P, but might be induced by other mineral nutrients or by the effectiveness of N and P nutrients. The unbalanced nutrition status and relatively quick decomposition of needles in the plantations might also contribute to the degradation.展开更多
The neutron yield in the12C(d,n)13N reaction and the proton yield in the12C(d,p)13C reaction have been measured using deuteron beams of energies 0.6-3 MeV.The deuteron beam is delivered from a 4-MeV electrostatic acce...The neutron yield in the12C(d,n)13N reaction and the proton yield in the12C(d,p)13C reaction have been measured using deuteron beams of energies 0.6-3 MeV.The deuteron beam is delivered from a 4-MeV electrostatic accelerator and bombarded on a thick carbon target.The neutrons are detected at 0°,24°,and 48°and the protons at135°in the laboratory frame.Further,the ratio of the neutron yield to the proton yield was calculated.This can be used to effectively recognize the resonances.The resonances are found at 1.4 MeV,1.7 MeV,and 2.5 MeV in the12C(d,p)13C reaction,and at 1.6 MeV and 2.7 MeV in the12C(d,n)13N reaction.The proposed method provides a way to reduce systematic uncertainty and helps confirm more resonances in compound nuclei.展开更多
Increasing levels of pollution within water bodies can cause eutrophication and an associated rapid growth in and reproduction of phytoplankton. Although most frequently occurring in bodies of water such as lakes and ...Increasing levels of pollution within water bodies can cause eutrophication and an associated rapid growth in and reproduction of phytoplankton. Although most frequently occurring in bodies of water such as lakes and dams, in recent years an increasing number of river systems in China have suffered serious algal blooms. The community structure of phytoplankton may differ, however, dependent on the hydrodynamic conditions and nutrient levels within the water body. The field investigation results obtained from a stagnant river in Suzhou City and Taihu Lake, China, showed that in water with higher concentrations of nitrogen and phosphorus, Chlorophyta became the predominant species and in water with lower concentrations of nitrogen and phosphorus, Cyanobacteria became the predominant species. Growth experiments with competitive species, Microcystis aeruginosa Kutz and Scenedesmus quadricauda (Turp.), were conducted at three different nutrient levels. The biomass of algae in pure and mixed cultures was measured under conditions of different N/P ratios at oligotrophic, eutrophic and hypertrophic nutrient levels. The results indicated that the most suitable state for the growth and reproduction of M. aeruginosa and S. quadricauda were eutrophic conditions in both pure and mixed cultures. Under competition, however, the lower medium nutrient levels favoured M. aeruginosa, while the higher medium nutrient levels better suited S. quadricauda. Under similar hydrodynamic conditions, the community structure of phytoplankton in the water body was determined by the dominant species in competition for nutrients.展开更多
Different kinds of mineral nutrients(NO_3-N, NH_4-N and PO_4-P) were applied in the simulated oil-polluted seawater for enhancing oil biodegradation in the N/P ratio 10∶1 and 20:1 Although indigenous microorganisms...Different kinds of mineral nutrients(NO_3-N, NH_4-N and PO_4-P) were applied in the simulated oil-polluted seawater for enhancing oil biodegradation in the N/P ratio 10∶1 and 20:1 Although indigenous microorganisms have the ability to degrade oil, adding nutrients accelerated biodegradation rates significantly. For the group amended with NO_3-N and PO_4-P in the ratio 10∶1, the reaction rate coefficient was 4 times higher than the natural biodegradation. Chemical and microbiological analysis showed that the optimal N/P ratio in the system is 10∶1, and microorganisms tend to utilize nitrate rather than ammonium as N source.展开更多
文摘Study of horizontal and vertical distributions of the N/P (nitrogen versus phosphate) atom ratio in the northern South Yellow Sea showed that the ratio varied greatly in upper waters of the investigated area and was always much greater than the theoretical Redfield ratio of 16:1 found below the thermocline zone. It was in general higher near the coast and lower in the central part. With increasing depth, the ratio became smaller and smaller. This distribution pattern is attributed to: 1) the anthropogenic influence of the surface N and P which makes the N/P ratio differ from the normal value; 2) the easy adsorption of P on particles hinders P transport to the central part; 3) below the thermocline zone, the N and P mainly come from the remineralization of the sedimented phytoplankton residues which have almost the theoretical Redfield value and; 4) the existence of the Yellow Sea Bottom Cold Water which inhibits the vertical exchange of the water.
基金supported by the National Key Research and Development Program of China (2016YFC0500706)
文摘The differences in nitrogen/phosphorus(N/P)ratios of different functional groups in ecology are more helpful in explaining species competition and community dynamics.Based on the functional groups of plant growth type,carbon metabolism pathway,root type and phylogenetic type,we analyzed characteristics of leaf N/P ratios of 77 species in Sanggendalai(typical grassland zone)of Zhenglan Banner,Inner Mongolia,China and 91 species in the Habahu National Nature Reserve(desertified grassland zone)in Yanchi County of Ningxia,China.The results show that the N/P ratio(16.91)of C3 plants in the desertified steppe was significantly larger than that(12.72)in the typical steppe,but there was no significant difference between the N/P ratios of C4 plants in the two zones.There was no significant difference in N/P ratios between C3 plants and C4 plants in the same zone.Similarly,the N/P ratio(16.60)of dicotyledons in desertified steppe were significantly higher than that(12.98)in typical steppe,while differences in N/P ratios between monocotyledonous plants of the two zones was not significant,and there existed no significant difference in N/P ratios between dicotyledonous and monocotyledonous plants in the same zone.The N/P ratio had significant difference between gramineous and non-gramineous plants in the typical steppe but not in the desertified steppe,but there existed no significant difference in N/P ratios among different root types of perennial herbaceous plants in the same type of steppe or between two types of steppe.Thus,different features on the N/P ratios of C3 plants and dicotyledonous plants between typical steppe and desertified steppe may lead to different growth status of plants,and the N/P ratio stoichiometric of the same plant functional group may be a foundation of the changes of a plant community.
基金supported by the National Natural Science Foundation of China (41076065)the Major State Basic Research Development Program of China (2010CB428701)
文摘Interactions between Skeletonema costatum (S. costatum) and Prorocentrum donghaiense (P. donghaiiense) were inves-tigated using bi-algal cultures at different concentrations of phosphate (PO4-P) and nitrate/phosphate (N/P) ratios. Experiments were conducted under P-limited conditions and the Lotka-Volterra mathematical model was used to simulate the growth of S. costatum and P. donghaiense in the bi-algal cultures. Both of these two species were inhibited significantly in bi-algal culture. The results of the simulation showed that the inhibitory degree of S. costaum by P. donghaiense was high when the concentration of PO4-P was low (0.1μmolL-1/2 d), but that of P. donghaiense by S. costaum was high with increased PO4-P supply (0.6μmolL-1/2 d). At low concen-tration of PO4-P (0.1μmolL-1/2 d), or high concentration of PO4-P (0.6μmolL-1/2 d) with high N/P ratio (160), the interactions be-tween S. costatum and P. donghaiense were dependent on the initial cell densities of both species. At high concentration of PO4-P (0.6μmolL-1/2 d) with low N/P ratio (25 or 80), S. costatum exhibited a survival strategy superior to that of P. donghaiense. The de-gree of inhibition of P. donghaiense by S. costaum increased with elevated N/P ratio when the medium was supplemented with con-centration 0.1μmolL-1/2 d of PO4-P. The degree of inhibition to P. donghaiense by S. costaum increased with elevated N/P ratio at low concentration of PO4-P (0.1 μmolL-1/2 d). This trend was conversed at high concentration of PO4-P (0.6μmolL-1/2 d). However, the degree of inhibition of S. costaum by P. donghaiense increased with the increased N/P ratio at different PO4-P concentrations (0.1μmolL-1/2 d and 0.6μmolL-1/2 d). These results suggested that both phosphate concentration and N/P ratio affected the competition between S. costaum and P. donghaiense: P. donghaiense is more competitive in environments with low phosphate or high N/P ratio and the influence of N/P ratio on the competition was more significant with lower phosphate concentration.
基金The research was supported by Innovation Research Project of Chinese Academy of Sciences (KZCX3-SW-418), and the 100 Young Researcher Project of Chinese Academy of Sciences.
文摘In order to examine the causes of degradation of Pinus sylvestris var. mongolica plantations on sandy land, the foliar concentrations of N, P, K and C were analyzed and compared between the field grown P. sylvestris var. mongolica trees from two provenances (natural forests and plantations). The results indicated that natural tree needles had lower N, P and C concentrations, and higher K concentrations than those of plantation tree needles. For plantation tree needles, ratios of N: P, P. K and N: K increased with tree age before 45 years old; but they were not clear for the natural tree needles. Compared with the conclusions reported on Pinus spp., we found that the foliar N and P concentrations were in the optimal range for both natural and plantation tree needles. This result suggested that N or P might not be the absolute limit factors in plant nutrient for P sylvestris var. mongolica on sandy land. However, foliar K concentrations in both natural and plantation tree needles were much lower than those reported on Pinus spp. (〉4.80 g kg-1).The N: P ratio of natural needles was in the adequate ranges, but N: P ratio of plantation needles was out of the adequate ranges. These results indicated that there was a better balanced nutrition status in the natural forest than in the plantations. If only considering the foliar nutrient concentrations of P sylvestris var. mongolica from different provenances, it might be concluded that the degradation phenomenon of P. sylvestris var. mongolica plantations was not induced by nutrition deficiency of absolute nutrients of N and P, but might be induced by other mineral nutrients or by the effectiveness of N and P nutrients. The unbalanced nutrition status and relatively quick decomposition of needles in the plantations might also contribute to the degradation.
基金partially supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Nos.XDB16 and XDPB09)the National Natural Science Foundation of China(Nos.11890714 and 11421505)the Key Research Program of Frontier Sciences of the CAS(No.QYZDJ-SSW-SLH002)
文摘The neutron yield in the12C(d,n)13N reaction and the proton yield in the12C(d,p)13C reaction have been measured using deuteron beams of energies 0.6-3 MeV.The deuteron beam is delivered from a 4-MeV electrostatic accelerator and bombarded on a thick carbon target.The neutrons are detected at 0°,24°,and 48°and the protons at135°in the laboratory frame.Further,the ratio of the neutron yield to the proton yield was calculated.This can be used to effectively recognize the resonances.The resonances are found at 1.4 MeV,1.7 MeV,and 2.5 MeV in the12C(d,p)13C reaction,and at 1.6 MeV and 2.7 MeV in the12C(d,n)13N reaction.The proposed method provides a way to reduce systematic uncertainty and helps confirm more resonances in compound nuclei.
基金supported by the Natural Science Foundation of Jiangsu Province (No.BK2006710) the Hi-Tech Research and Development Program (863) of China (No:2003AA601100)
文摘Increasing levels of pollution within water bodies can cause eutrophication and an associated rapid growth in and reproduction of phytoplankton. Although most frequently occurring in bodies of water such as lakes and dams, in recent years an increasing number of river systems in China have suffered serious algal blooms. The community structure of phytoplankton may differ, however, dependent on the hydrodynamic conditions and nutrient levels within the water body. The field investigation results obtained from a stagnant river in Suzhou City and Taihu Lake, China, showed that in water with higher concentrations of nitrogen and phosphorus, Chlorophyta became the predominant species and in water with lower concentrations of nitrogen and phosphorus, Cyanobacteria became the predominant species. Growth experiments with competitive species, Microcystis aeruginosa Kutz and Scenedesmus quadricauda (Turp.), were conducted at three different nutrient levels. The biomass of algae in pure and mixed cultures was measured under conditions of different N/P ratios at oligotrophic, eutrophic and hypertrophic nutrient levels. The results indicated that the most suitable state for the growth and reproduction of M. aeruginosa and S. quadricauda were eutrophic conditions in both pure and mixed cultures. Under competition, however, the lower medium nutrient levels favoured M. aeruginosa, while the higher medium nutrient levels better suited S. quadricauda. Under similar hydrodynamic conditions, the community structure of phytoplankton in the water body was determined by the dominant species in competition for nutrients.
文摘Different kinds of mineral nutrients(NO_3-N, NH_4-N and PO_4-P) were applied in the simulated oil-polluted seawater for enhancing oil biodegradation in the N/P ratio 10∶1 and 20:1 Although indigenous microorganisms have the ability to degrade oil, adding nutrients accelerated biodegradation rates significantly. For the group amended with NO_3-N and PO_4-P in the ratio 10∶1, the reaction rate coefficient was 4 times higher than the natural biodegradation. Chemical and microbiological analysis showed that the optimal N/P ratio in the system is 10∶1, and microorganisms tend to utilize nitrate rather than ammonium as N source.