Background:Stemness and chemoresistance contribute to cervical cancer recurrence and metastasis.In the current study,we determined the relevant players and role of N^(6)-methyladenine(m^(6)A)RNA methylation in cervica...Background:Stemness and chemoresistance contribute to cervical cancer recurrence and metastasis.In the current study,we determined the relevant players and role of N^(6)-methyladenine(m^(6)A)RNA methylation in cervical cancer progression.Methods:The roles of m^(6)A RNA methylation and centromere protein K(CENPK)in cervical cancer were analyzed using bioinformatics analysis.Methylated RNA immunoprecipitation was adopted to detect m^(6)A modification of CENPK mRNA.Human cervical cancer clinical samples,cell lines,and xenografts were used for analyzing gene expression and function.Immunofluorescence staining and the tumorsphere formation,clonogenic,MTT,and EdU assays were performed to determine cell stemness,chemoresistance,migration,invasion,and proliferation in HeLa and SiHa cells,respectively.Western blot analysis,co-immunoprecipitation,chromatin immunoprecipitation,and luciferase reporter,cycloheximide chase,and cell fractionation assays were performed to elucidate the underlying mechanism.Results:Bioinformatics analysis of public cancer datasets revealed firm links between m^(6)A modification patterns and cervical cancer prognosis,especially through ZC3H13-mediated m^(6)A modification of CENPK mRNA.CENPK expression was elevated in cervical cancer,associated with cancer recurrence,and independently predicts poor patient prognosis[hazard ratio=1.413,95%confidence interval=1.078−1.853,P=0.012].Silencing of CENPK prolonged the overall survival time of cervical cancer-bearing mice and improved the response of cervical cancer tumors to chemotherapy in vivo(P<0.001).We also showed that CENPK was directly bound to SOX6 and disrupted the interactions of CENPK withβ-catenin,which promotedβ-catenin expression and nuclear translocation,facilitated p53 ubiquitination,and led to activation of Wnt/β-catenin signaling,but suppression of the p53 pathway.This dysregulation ultimately enhanced the tumorigenic pathways required for cell stemness,DNA damage repair pathways necessary for cisplatin/carboplatin resistance,epithelial-mesenchymal transition involved in metastasis,and DNA replication that drove tumor cell proliferation.Conclusions:CENPK was shown to have an oncogenic role in cervical cancer and can thus serve as a prognostic indicator and novel target for cervical cancer treatment.展开更多
Growing evidence supports that cancer progression is closely associated with the tumor microenvironment and immune evasion.Importantly,recent studies have revealed the crucial roles of epigenetic regulators in shaping...Growing evidence supports that cancer progression is closely associated with the tumor microenvironment and immune evasion.Importantly,recent studies have revealed the crucial roles of epigenetic regulators in shaping the tumor microenvironment and restoring immune recognition.N^(6)-methyladenosine(m^(6)A)modification,the most prevalent epigenetic modification of mammalian mRNAs,has essential functions in regulating the processing and metabolism of its targeted RNAs,and therefore affects various biological processes including tumorigenesis and progression.Recent studies have demonstrated the critical functions and molecular mechanisms underlying abnormal m^(6)A modification in the regulation of tumor immunity.In this review,we summarize recent research progress in the potential roles of m^(6)A modification in tumor immunoregulation,with a special focus on the anti-tumor processes of immune cells and involvement in immune-associated molecules and pathways.Furthermore,we review current knowledge regarding the close correlation between m6A-related risk signatures and the tumor immune microenvironment landscape,and we discuss the prognostic value and therapeutic efficacy of m^(6)A regulators in a variety of cancer types.展开更多
基金the Joint Funds for the Innovation of Science and Technology Program of Fujian Province,China(2018Y9110)the Natural Science Foundation of Fujian Province,China,(2020J011126)the China Postdoctoral Science Foundation(2021T140468).
文摘Background:Stemness and chemoresistance contribute to cervical cancer recurrence and metastasis.In the current study,we determined the relevant players and role of N^(6)-methyladenine(m^(6)A)RNA methylation in cervical cancer progression.Methods:The roles of m^(6)A RNA methylation and centromere protein K(CENPK)in cervical cancer were analyzed using bioinformatics analysis.Methylated RNA immunoprecipitation was adopted to detect m^(6)A modification of CENPK mRNA.Human cervical cancer clinical samples,cell lines,and xenografts were used for analyzing gene expression and function.Immunofluorescence staining and the tumorsphere formation,clonogenic,MTT,and EdU assays were performed to determine cell stemness,chemoresistance,migration,invasion,and proliferation in HeLa and SiHa cells,respectively.Western blot analysis,co-immunoprecipitation,chromatin immunoprecipitation,and luciferase reporter,cycloheximide chase,and cell fractionation assays were performed to elucidate the underlying mechanism.Results:Bioinformatics analysis of public cancer datasets revealed firm links between m^(6)A modification patterns and cervical cancer prognosis,especially through ZC3H13-mediated m^(6)A modification of CENPK mRNA.CENPK expression was elevated in cervical cancer,associated with cancer recurrence,and independently predicts poor patient prognosis[hazard ratio=1.413,95%confidence interval=1.078−1.853,P=0.012].Silencing of CENPK prolonged the overall survival time of cervical cancer-bearing mice and improved the response of cervical cancer tumors to chemotherapy in vivo(P<0.001).We also showed that CENPK was directly bound to SOX6 and disrupted the interactions of CENPK withβ-catenin,which promotedβ-catenin expression and nuclear translocation,facilitated p53 ubiquitination,and led to activation of Wnt/β-catenin signaling,but suppression of the p53 pathway.This dysregulation ultimately enhanced the tumorigenic pathways required for cell stemness,DNA damage repair pathways necessary for cisplatin/carboplatin resistance,epithelial-mesenchymal transition involved in metastasis,and DNA replication that drove tumor cell proliferation.Conclusions:CENPK was shown to have an oncogenic role in cervical cancer and can thus serve as a prognostic indicator and novel target for cervical cancer treatment.
基金This research was supported by grants from the National Natural Science Foundation of China(Grant Nos.81922052,81974435,and 81772999)Natural Science Foundation of Guangdong Province(Grant No.2019B151502011)the Guangzhou People’s Livelihood Science and Technology Project(Grant No.201903010006).
文摘Growing evidence supports that cancer progression is closely associated with the tumor microenvironment and immune evasion.Importantly,recent studies have revealed the crucial roles of epigenetic regulators in shaping the tumor microenvironment and restoring immune recognition.N^(6)-methyladenosine(m^(6)A)modification,the most prevalent epigenetic modification of mammalian mRNAs,has essential functions in regulating the processing and metabolism of its targeted RNAs,and therefore affects various biological processes including tumorigenesis and progression.Recent studies have demonstrated the critical functions and molecular mechanisms underlying abnormal m^(6)A modification in the regulation of tumor immunity.In this review,we summarize recent research progress in the potential roles of m^(6)A modification in tumor immunoregulation,with a special focus on the anti-tumor processes of immune cells and involvement in immune-associated molecules and pathways.Furthermore,we review current knowledge regarding the close correlation between m6A-related risk signatures and the tumor immune microenvironment landscape,and we discuss the prognostic value and therapeutic efficacy of m^(6)A regulators in a variety of cancer types.