For a complex flow about multi-element airfoils a mixed grid method is set up. C-type grids are produced on each element′s body and in their wakes at first, O-type grids are given in the outmost area, and H-type grid...For a complex flow about multi-element airfoils a mixed grid method is set up. C-type grids are produced on each element′s body and in their wakes at first, O-type grids are given in the outmost area, and H-type grids are used in middle additional areas. An algebra method is used to produce the initial grids in each area. And the girds are optimized by elliptical differential equation method. Then C-O-H zonal patched grids around multi-element airfoils are produced automatically and efficiently. A time accurate finite-volume integration method is used to solve the compressible laminar and turbulent Navier-Stokes (N-S) equations on the grids. Computational results prove the method to be effective.展开更多
Based on analyzing some simulation models of single phase gaseous flow in microchannels (0. 001〈 Kn〈0. 1 ), a numerical simulation of N-S equations with the slip model is presented. In the simulation, the collocat...Based on analyzing some simulation models of single phase gaseous flow in microchannels (0. 001〈 Kn〈0. 1 ), a numerical simulation of N-S equations with the slip model is presented. In the simulation, the collocated grid and the SIMPLE scheme are used. Results show that the pressure in the inlet is changed with Knudsen number. The slip speed and the temperature creep are increased with the augment of Knudsen number. The drag force decreases and the resistance of the heat trensfer has a little increase.展开更多
Containment booms are commonly used in collecting and containing spilled oil on the sea surface and in protecting specific sea areas against oil slick spreading.In the present study,a numerical model is proposed based...Containment booms are commonly used in collecting and containing spilled oil on the sea surface and in protecting specific sea areas against oil slick spreading.In the present study,a numerical model is proposed based on the N-S equations in a mesh frame.The proposed model tracks the outline of the floating boom in motion by using the fractional area/volume obstacle representation technique.The boom motion is then simulated by the technique of general moving object.The simulated results of the rigid oil boom motions are validated against the experimental results.Then,the failure mechanism of the boom is investigated through numerical experiments.Based on the numerical results,the effects of boom parameters and dynamic factors on the oil containment performance are also assessed.展开更多
The discontinuous Galerkin(DG) method is established and innovatively conducted on accurately simulating the evolution of blade-tip vortex and the aerodynamic characteristics of helicopter rotor. Firstly,the Reynolds-...The discontinuous Galerkin(DG) method is established and innovatively conducted on accurately simulating the evolution of blade-tip vortex and the aerodynamic characteristics of helicopter rotor. Firstly,the Reynolds-Averaged Navier-Stokes(RANS)equations in rotating reference frame are employed,and the embedded grid system is developed with the finite volume method(FVM)and the DG method conducted on the blade grid and background grid respectively. Besides,the Harten-Lax-Van Leer contact(HLLC)scheme with high-resolution and low-dissipation is employed for spatial discretization,and the explicit third-order Runge-Kutta scheme is used to accomplish the temporal discretization. Secondly,the aerodynamic characteristics and the evolution of blade-tip vortex for Caradonna-Tung rotor are simulated by the established CFD method,and the numerical results are in good agreement with experimental data,which well validates the accuracy of the DG method and shows the advantages of DG method on capturing the detailed blade-tip vortex compared with the FVM method. Finally,the evolution of tip vortex at different blade tip Mach numbers and collective pitches is discussed.展开更多
the establishment of multi-element airfoil in steady and unsteady ground effect N-S equation turbulence model, the S-A model of multi element airfoils during takeoff and landing high attack angle change numerical simu...the establishment of multi-element airfoil in steady and unsteady ground effect N-S equation turbulence model, the S-A model of multi element airfoils during takeoff and landing high attack angle change numerical simulation analysis, the calculation results show that the lower altitude, lift and drag wing angle decreased; the greater the ground the effect is more obvious, the greater the loss of lift. The simulation results show that the lift coefficient is slightly less than that of unsteady numerical simulation, and the drag coefficient is slightly less than that of unsteady numerical simulation. The ground disturbance to the wing not only affects the steady state flow field, but also is closely related to the unsteady aerodynamic performance. The results of this study can provide a reference for the design and flight control of large aircraft wings.展开更多
A Legendre spectral approximation based on the pressure stabilization method for non-periodic, unsteady Navier-Stokes equations is considered. The generalized stability and the convergence are proved strictly. The app...A Legendre spectral approximation based on the pressure stabilization method for non-periodic, unsteady Navier-Stokes equations is considered. The generalized stability and the convergence are proved strictly. The approximation results in this paper are also useful for other non-linear problems.展开更多
The blade tip clearance flow in axial-flow pump is simulated based on three-dimensional N-S equations, RNG k -e turbulence model, and SIMPLEC algorithm. It shows that numerical results agree well with experiment data ...The blade tip clearance flow in axial-flow pump is simulated based on three-dimensional N-S equations, RNG k -e turbulence model, and SIMPLEC algorithm. It shows that numerical results agree well with experiment data measured by 5-hole probe through validation. Flow fields at the blade tip and velocity distribution at the exit of rotor are analyzed in detail. The numerical results show that the increase in tip clearance reduces hydro-head, especially at small flow rate. Experiment equipment is also introduced.展开更多
Through analyzing the motion characteristics of bird-like flapping flight, it is considered that the wing angular acceleration is equal to zero at the point of maximum angular speed. Thus, the flapping flight is equiv...Through analyzing the motion characteristics of bird-like flapping flight, it is considered that the wing angular acceleration is equal to zero at the point of maximum angular speed. Thus, the flapping flight is equivalent to a uniform rotating motion which can be analyzed by using the stream surface theory of turbomachinery during a micro period of time. In this article, the N-S equations of the motion are expanded in a non-orthogonal curvilinear coordinate system, and simplified on stream surfaces of the flapping flight model. By using stream function me- thod, the three-dimensional unsteady flow equations are simplified as a two-order partial differential equation with variable coefficients eventually and the equation's iterative solving method on S1 and $2 stream surfaces of the flapping flight model is presented. Through expanding the relatively steady equations of flapping flight at an arbitrary time point of a stroke on meridional plane of the flapping flight model, it can use a relatively steady mo- tion to approximate the real flapping flight at that time point, and analyze the flow stability influenced by the wing's flexibility. It can be seen that the wing flexibility is related to the higher pressurization capacity and the flow stability, and the pressurization capacity of flexible wing is proportional to the angular speed, angular distor- tion rate and radius square.展开更多
文摘For a complex flow about multi-element airfoils a mixed grid method is set up. C-type grids are produced on each element′s body and in their wakes at first, O-type grids are given in the outmost area, and H-type grids are used in middle additional areas. An algebra method is used to produce the initial grids in each area. And the girds are optimized by elliptical differential equation method. Then C-O-H zonal patched grids around multi-element airfoils are produced automatically and efficiently. A time accurate finite-volume integration method is used to solve the compressible laminar and turbulent Navier-Stokes (N-S) equations on the grids. Computational results prove the method to be effective.
文摘Based on analyzing some simulation models of single phase gaseous flow in microchannels (0. 001〈 Kn〈0. 1 ), a numerical simulation of N-S equations with the slip model is presented. In the simulation, the collocated grid and the SIMPLE scheme are used. Results show that the pressure in the inlet is changed with Knudsen number. The slip speed and the temperature creep are increased with the augment of Knudsen number. The drag force decreases and the resistance of the heat trensfer has a little increase.
基金supported by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China(No.51321065)the Program of International S&T Cooperation(No.S2015ZR1030)
文摘Containment booms are commonly used in collecting and containing spilled oil on the sea surface and in protecting specific sea areas against oil slick spreading.In the present study,a numerical model is proposed based on the N-S equations in a mesh frame.The proposed model tracks the outline of the floating boom in motion by using the fractional area/volume obstacle representation technique.The boom motion is then simulated by the technique of general moving object.The simulated results of the rigid oil boom motions are validated against the experimental results.Then,the failure mechanism of the boom is investigated through numerical experiments.Based on the numerical results,the effects of boom parameters and dynamic factors on the oil containment performance are also assessed.
基金supported by the National Natural Science Foundation of China(Nos.12072156, 12032012)the Foundation of Rotor Aerodynamic Key Laboratory (No.RAL20190102)the Priority Academic Program Development Project of Jiangsu Higher Education Institutions(PAPD)。
文摘The discontinuous Galerkin(DG) method is established and innovatively conducted on accurately simulating the evolution of blade-tip vortex and the aerodynamic characteristics of helicopter rotor. Firstly,the Reynolds-Averaged Navier-Stokes(RANS)equations in rotating reference frame are employed,and the embedded grid system is developed with the finite volume method(FVM)and the DG method conducted on the blade grid and background grid respectively. Besides,the Harten-Lax-Van Leer contact(HLLC)scheme with high-resolution and low-dissipation is employed for spatial discretization,and the explicit third-order Runge-Kutta scheme is used to accomplish the temporal discretization. Secondly,the aerodynamic characteristics and the evolution of blade-tip vortex for Caradonna-Tung rotor are simulated by the established CFD method,and the numerical results are in good agreement with experimental data,which well validates the accuracy of the DG method and shows the advantages of DG method on capturing the detailed blade-tip vortex compared with the FVM method. Finally,the evolution of tip vortex at different blade tip Mach numbers and collective pitches is discussed.
文摘the establishment of multi-element airfoil in steady and unsteady ground effect N-S equation turbulence model, the S-A model of multi element airfoils during takeoff and landing high attack angle change numerical simulation analysis, the calculation results show that the lower altitude, lift and drag wing angle decreased; the greater the ground the effect is more obvious, the greater the loss of lift. The simulation results show that the lift coefficient is slightly less than that of unsteady numerical simulation, and the drag coefficient is slightly less than that of unsteady numerical simulation. The ground disturbance to the wing not only affects the steady state flow field, but also is closely related to the unsteady aerodynamic performance. The results of this study can provide a reference for the design and flight control of large aircraft wings.
文摘A Legendre spectral approximation based on the pressure stabilization method for non-periodic, unsteady Navier-Stokes equations is considered. The generalized stability and the convergence are proved strictly. The approximation results in this paper are also useful for other non-linear problems.
文摘The blade tip clearance flow in axial-flow pump is simulated based on three-dimensional N-S equations, RNG k -e turbulence model, and SIMPLEC algorithm. It shows that numerical results agree well with experiment data measured by 5-hole probe through validation. Flow fields at the blade tip and velocity distribution at the exit of rotor are analyzed in detail. The numerical results show that the increase in tip clearance reduces hydro-head, especially at small flow rate. Experiment equipment is also introduced.
文摘Through analyzing the motion characteristics of bird-like flapping flight, it is considered that the wing angular acceleration is equal to zero at the point of maximum angular speed. Thus, the flapping flight is equivalent to a uniform rotating motion which can be analyzed by using the stream surface theory of turbomachinery during a micro period of time. In this article, the N-S equations of the motion are expanded in a non-orthogonal curvilinear coordinate system, and simplified on stream surfaces of the flapping flight model. By using stream function me- thod, the three-dimensional unsteady flow equations are simplified as a two-order partial differential equation with variable coefficients eventually and the equation's iterative solving method on S1 and $2 stream surfaces of the flapping flight model is presented. Through expanding the relatively steady equations of flapping flight at an arbitrary time point of a stroke on meridional plane of the flapping flight model, it can use a relatively steady mo- tion to approximate the real flapping flight at that time point, and analyze the flow stability influenced by the wing's flexibility. It can be seen that the wing flexibility is related to the higher pressurization capacity and the flow stability, and the pressurization capacity of flexible wing is proportional to the angular speed, angular distor- tion rate and radius square.