Currently, the oxygen reduction reaction(ORR) mainly depends on precious metal platinum(Pt) catalysts. However, Pt-based catalysts have several shortcomings, such as high cost, scarcity, and poor long-term stability. ...Currently, the oxygen reduction reaction(ORR) mainly depends on precious metal platinum(Pt) catalysts. However, Pt-based catalysts have several shortcomings, such as high cost, scarcity, and poor long-term stability. Therefore, development of e cient metal-free electrocatalysts to replace Pt-based electrocatalysts is important. In this study, we successfully prepared nitrogen-and fluorinecodoped microporous carbon nanofibers(N, F-MCFs) via electrospinning polyacrylonitrile/polyvinylidene fluoride/polyvinylpyrrolidone(PAN/PVDF/PVP) tricomponent polymers followed by a hydrothermal process and thermal treatment, which was achieved for the first time in the literature. The results indicated that N, F-MCFs exhibit a high catalytic activity(E_(onset): 0.94 V vs. RHE, E_(1/2): 0.81 V vs. RHE, and electron transfer number: 4.0) and considerably better stability and methanol tolerance for ORR in alkaline solutions as compared to commercial Pt/carbon(Pt/C, 20 wt%) catalysts. Furthermore, in acidic media, N, F-MCFs showed a four-electron transfer pathway for ORR. This study provides a new strategy for in situ synthesis of N, F-MCFs as highly e cient metal-free electrocatalysts for ORR in fuel cells.展开更多
Ammonia(NH_(3)),a critical raw material for various industrial chemicals,is also recognized as a clean and efficient energy carrier for the future energy economy[1].However,the industrial-scale production of NH_(3) st...Ammonia(NH_(3)),a critical raw material for various industrial chemicals,is also recognized as a clean and efficient energy carrier for the future energy economy[1].However,the industrial-scale production of NH_(3) strongly relies on the Haber-Bosch process,which involves massive fuel consumption and enormous greenhouse gas emissions[2].Therefore,there is an urgent need to develop sustainable and energy-saving alternative routes for artificial NH3 production.展开更多
Proton exchange membrane fuel cells suffer from the sluggish kinetics of the oxygen reduction reaction(ORR)and the high cost of Pt catalysts.In the present work,a high‐performance ORR catalystbased on Fe,N,S‐doped p...Proton exchange membrane fuel cells suffer from the sluggish kinetics of the oxygen reduction reaction(ORR)and the high cost of Pt catalysts.In the present work,a high‐performance ORR catalystbased on Fe,N,S‐doped porous carbon(FeNS‐PC)was synthesized using melamine formaldehyderesin as C and N precursors,Fe(SCN)3as Fe and S precursors,and CaCl2as a template via a two‐stepheat treatment without a harsh template removal step.The results show that the catalyst treated at900℃(FeNS‐PC‐900)had a high surface area of775m2/g,a high mass activity of10.2A/g in anacidic medium,and excellent durability;the half‐wave potential decreased by only20mV after10000potential cycles.The FeNS‐PC‐900catalyst was used as the cathode in a proton exchangemembrane fuel cell and delivered a peak power density of0.49W/cm2.FeNS‐PC‐900therefore hasgood potential for use in practical applications.展开更多
基金funding for this work provided by the National Nature Science Foundation of China (51573090)National Key R&D Program of China (2016YFB0302000)Open Foundation from State Key Laboratory of Fluorinated Functional Membrane Material
文摘Currently, the oxygen reduction reaction(ORR) mainly depends on precious metal platinum(Pt) catalysts. However, Pt-based catalysts have several shortcomings, such as high cost, scarcity, and poor long-term stability. Therefore, development of e cient metal-free electrocatalysts to replace Pt-based electrocatalysts is important. In this study, we successfully prepared nitrogen-and fluorinecodoped microporous carbon nanofibers(N, F-MCFs) via electrospinning polyacrylonitrile/polyvinylidene fluoride/polyvinylpyrrolidone(PAN/PVDF/PVP) tricomponent polymers followed by a hydrothermal process and thermal treatment, which was achieved for the first time in the literature. The results indicated that N, F-MCFs exhibit a high catalytic activity(E_(onset): 0.94 V vs. RHE, E_(1/2): 0.81 V vs. RHE, and electron transfer number: 4.0) and considerably better stability and methanol tolerance for ORR in alkaline solutions as compared to commercial Pt/carbon(Pt/C, 20 wt%) catalysts. Furthermore, in acidic media, N, F-MCFs showed a four-electron transfer pathway for ORR. This study provides a new strategy for in situ synthesis of N, F-MCFs as highly e cient metal-free electrocatalysts for ORR in fuel cells.
基金supported by the National Natural Science Foundation of China(51761024)“Feitian Scholar”Program of Gansu Province+1 种基金CAS“Light of West China”ProgramFoundation of A Hundred Youth Talents Training Program of Lanzhou Jiaotong University。
文摘Ammonia(NH_(3)),a critical raw material for various industrial chemicals,is also recognized as a clean and efficient energy carrier for the future energy economy[1].However,the industrial-scale production of NH_(3) strongly relies on the Haber-Bosch process,which involves massive fuel consumption and enormous greenhouse gas emissions[2].Therefore,there is an urgent need to develop sustainable and energy-saving alternative routes for artificial NH3 production.
基金supported by the National Basic Research Program of China (973 Program,2015CB932303)the National Natural Science Founda-tion of China (21373175,21621091)~~
文摘Proton exchange membrane fuel cells suffer from the sluggish kinetics of the oxygen reduction reaction(ORR)and the high cost of Pt catalysts.In the present work,a high‐performance ORR catalystbased on Fe,N,S‐doped porous carbon(FeNS‐PC)was synthesized using melamine formaldehyderesin as C and N precursors,Fe(SCN)3as Fe and S precursors,and CaCl2as a template via a two‐stepheat treatment without a harsh template removal step.The results show that the catalyst treated at900℃(FeNS‐PC‐900)had a high surface area of775m2/g,a high mass activity of10.2A/g in anacidic medium,and excellent durability;the half‐wave potential decreased by only20mV after10000potential cycles.The FeNS‐PC‐900catalyst was used as the cathode in a proton exchangemembrane fuel cell and delivered a peak power density of0.49W/cm2.FeNS‐PC‐900therefore hasgood potential for use in practical applications.
基金supported by the National Basic Research Program of China(973 Program,2005CB221400)the National Natural Science Foundation of China(20673055 and 21073089)Industrial Supporting Project of Jiangsu Province(BE2009145)~~
文摘Fe-N-C材料是目前非常有潜力的一类非贵金属氧还原电极催化剂。本论文分别以导电碳黑(HG-1F)、苯胺、Fe Cl3为碳载体、含氮前驱体、铁前驱体,依次经过聚合、热处理和酸处理获得了多孔Fe-N-C材料。电化学测试结果表明,多孔Fe-N-C材料在0.1 M KOH中催化氧还原反应(ORR)的活性随酸处理时间呈火山型变化,其中酸处理4 h的样品对ORR具有较高的催化活性,促使ORR主要以4电子反应途径进行。