[Objective]The aim was to study the effects of regulation of C/N ratio wheat straw application on tobacco nitrogen,phosphorus and potassium uptake. [Method]Effects of regulation C/N ratio wheat straw application on th...[Objective]The aim was to study the effects of regulation of C/N ratio wheat straw application on tobacco nitrogen,phosphorus and potassium uptake. [Method]Effects of regulation C/N ratio wheat straw application on the flue-cured tobacco yield,output value,nitrogen,phosphorus and potassium content and cumulative uptake of the upper,middle and bottom leaf were studied by using the field plot experiments at Banqiao town,Qujing city,Yunnan Province during the 2008-2009 summer growing seasons. [Result]The results showed that the application of wheat straw alone or after C/N regulation,could significantly increase tobacco production,potassium content,the potassium and nitrogen accumulation amount of leaf,and was more conducive to the potassium uptake of tobacco leaf with wheat straw application after C/N regulation. Compared with non-straw application,the yield of tobacco increased by 6.59%,3.58%,5.98%,8.80% with application of wheat straw alone,wheat straw and vetch,wheat straw and oilseed cake,wheat straw and urea nitrogen,the potassium content in tobacco leaf increased by 3.85%,7.76%,8.82%,11.21%,respectively,the total potassium cumulative amount of leaf increased by 10.71%,11.62%,15.32% ,21.01% and the total nitrogen cumulative amount increased by 9.76%,1.22%,8.14%,14.00%. However,the differences of tobacco leaf nitrogen content among the different treatments were not significant,the phosphorus uptake of tobacco leaf decreased. [Conclusion]application of high C/N ratio wheat straw in flue-cured tobacco production,which should be concerned not only to adjust C/N ratio by adding nitrogen,but also considering additional phosphorus application.展开更多
A hydroponic experiment was carried out to determine the influence of replacing 20% of nitrate-N in nutrient solutions with 20 individual amino acids on growth, nitrate accumulation, and concentrations of nitrogen (N...A hydroponic experiment was carried out to determine the influence of replacing 20% of nitrate-N in nutrient solutions with 20 individual amino acids on growth, nitrate accumulation, and concentrations of nitrogen (N), phosphorus (P), and potassium (K) in pak-choi (Brassica chinensis L.) shoots. When 20% of nitrate-N was replaced with arginine (Arg) compared to the full nitrate treatment, pak-choi shoot fresh and dry weights increased significantly (P ≤ 0.05), but when 20% of nitrate-N was replaced with alanine (Ala), valine (Val), leucine (Leu), isoleucine (Ile), proline (Pro), phenylalanine (Phe), methionine (Met), aspartic acid (Asp), glutamic acid (Glu), lysine (Lys), glycine (Gly), serine (Ser), threonine (Thr), cysteine (Cys), and tyrosine (Tyr), shoot fresh and dry weights decreased significantly (P ≤ 0.05). After replacing 20% of nitrate-N with asparagine (Asn) and glutamine (Gin), shoot fresh and dry weights were unaffected. Compared to the full nitrate treatment, amino acid replacement treatments, except for Cys, Gly, histidine (His), and Arg, significantly reduced (P ≤0.05) nitrate concentrations in plant shoots. Except for Cys, Leu, Pro, and Met, total N concentrations in plant tissues of the other amino acid treatments significantly increased (P ≤ 0.05). Amino acids also affected total P and K concentrations, but the effects differed depending on individual amino acids. To improve pak-choi shoot quality, Gln and Asn, due to their insignificant effects on pak-choi growth, their significant reduction in nitrate concentrations, and their increase in macroelement content in plants, may be used to partially replace nitrate-N.展开更多
The effects of varying nitrogen (N): phosphorus (P) ratios on the growth and N-uptake and assimilation of the harmful dinoflagellates Prorocentrum minimum and Prorocentrum donghaiense were examined in turbidistat...The effects of varying nitrogen (N): phosphorus (P) ratios on the growth and N-uptake and assimilation of the harmful dinoflagellates Prorocentrum minimum and Prorocentrum donghaiense were examined in turbidistat culture experiments. Algal cultures were supplied with media containing PO4^3- in various concentrations to obtain a wide range of N:P ratios. Experiments to determine rates of N uptake and assimilation of different N sources (NO^3-, NH4^+, urea and glycine by P. minimum and NO3^-, NH4^+ by P. donghaiense) were conducted using ^15-N tracer techniques at each N:P ratio. The growth rates suggested nutrient limitation at both high and low N:P ratios relative to the Redfield ratio. On a diel basis, the growth of both species was regulated by the light-dark cycle, which may be a result of regulation of both lightdependent growth and light-independent nutrient uptake. Maximum growth rates of both species always occurred at the beginning of light phase. In P-rich medium (low N:P ratio), both species had higher N assimilation rates, suggesting N limitation. Low assimilation coefficients at high N:P ratios suggested P limitation of N uptake and assimilation. NO3 ^-and NH4^+ contributed more than 90% of the total N uptake of P. minimum. Reduced N sources were more quickly assimilated than NO3^-. Highest average daily growth rates were recorded near an N:P ratio of 12 for both species. The N uptake rates of cultures at N:P ratios near Redfield ratio were more balanced with growth rates. The linkage between growth rates and N uptake/assimilation rates were conceptually described by the variation of cell N quota. The N:P ratios affect the N uptake and growth of Prorocentrum spp., and may regulate their bloom progression in eutrophic ecosystems.展开更多
The growth, biochemical content and bioaccumulation quantity of 2,2',4,4'-tetrabromodiphenyl ether(BDE-47) in Skeletonema costatum were studied under different N:P ratios(1, 4, 16, 64 and 128). All cellular bi...The growth, biochemical content and bioaccumulation quantity of 2,2',4,4'-tetrabromodiphenyl ether(BDE-47) in Skeletonema costatum were studied under different N:P ratios(1, 4, 16, 64 and 128). All cellular biochemical contents of S. costatum presented decreasing trend over cultivation time. At early stage of cultivation, the cellular protein, carbohydrate and lipid in S. costatum presented higher values in treatments of N:P=4 and 16. However, they were lower in these treatments at the late stage, but higher in treatments N:P=1 and 128. Similarly, BDE-47 levels per cell of S. costatum were higher in treatments of N:P=4 and 16 at early stage of cultivation, which were 3.8 and 3.7 ng(106 cells)-1, respectively. At the middle stage of cultivation, the BDE-47 level per S. costatum cell lowered; and it further reduced in the treatments of N:P=4 and 16 at the late stage with the values 0.6 and 0.5 ng(106 cells)-1, respectively. However, it rose in N:P=128, reaching up to 2.3 ng(106 cells)-1. Compared with BDE-47 per cell, BDE-47 per algal volume under different N:P ratios did not present obvious difference. The quantity BDE-47 accumulated per cell of S. costatum was positively correlated with protein, carbohydrate and lipid per cell; meanwhile, the BDE-47 per volume had a positive correlation with biochemical content per volume. The variation of bioaccumulation ability of BDE-47 in S. costatum can be explained by biochemical changes due to N:P ratios.展开更多
Interactions between Skeletonema costatum (S. costatum) and Prorocentrum donghaiense (P. donghaiiense) were inves-tigated using bi-algal cultures at different concentrations of phosphate (PO4-P) and nitrate/phosphate ...Interactions between Skeletonema costatum (S. costatum) and Prorocentrum donghaiense (P. donghaiiense) were inves-tigated using bi-algal cultures at different concentrations of phosphate (PO4-P) and nitrate/phosphate (N/P) ratios. Experiments were conducted under P-limited conditions and the Lotka-Volterra mathematical model was used to simulate the growth of S. costatum and P. donghaiense in the bi-algal cultures. Both of these two species were inhibited significantly in bi-algal culture. The results of the simulation showed that the inhibitory degree of S. costaum by P. donghaiense was high when the concentration of PO4-P was low (0.1μmolL-1/2 d), but that of P. donghaiense by S. costaum was high with increased PO4-P supply (0.6μmolL-1/2 d). At low concen-tration of PO4-P (0.1μmolL-1/2 d), or high concentration of PO4-P (0.6μmolL-1/2 d) with high N/P ratio (160), the interactions be-tween S. costatum and P. donghaiense were dependent on the initial cell densities of both species. At high concentration of PO4-P (0.6μmolL-1/2 d) with low N/P ratio (25 or 80), S. costatum exhibited a survival strategy superior to that of P. donghaiense. The de-gree of inhibition of P. donghaiense by S. costaum increased with elevated N/P ratio when the medium was supplemented with con-centration 0.1μmolL-1/2 d of PO4-P. The degree of inhibition to P. donghaiense by S. costaum increased with elevated N/P ratio at low concentration of PO4-P (0.1 μmolL-1/2 d). This trend was conversed at high concentration of PO4-P (0.6μmolL-1/2 d). However, the degree of inhibition of S. costaum by P. donghaiense increased with the increased N/P ratio at different PO4-P concentrations (0.1μmolL-1/2 d and 0.6μmolL-1/2 d). These results suggested that both phosphate concentration and N/P ratio affected the competition between S. costaum and P. donghaiense: P. donghaiense is more competitive in environments with low phosphate or high N/P ratio and the influence of N/P ratio on the competition was more significant with lower phosphate concentration.展开更多
基金Supported by National Science and Technology Support Program(2006BAD05B06-04)~~
文摘[Objective]The aim was to study the effects of regulation of C/N ratio wheat straw application on tobacco nitrogen,phosphorus and potassium uptake. [Method]Effects of regulation C/N ratio wheat straw application on the flue-cured tobacco yield,output value,nitrogen,phosphorus and potassium content and cumulative uptake of the upper,middle and bottom leaf were studied by using the field plot experiments at Banqiao town,Qujing city,Yunnan Province during the 2008-2009 summer growing seasons. [Result]The results showed that the application of wheat straw alone or after C/N regulation,could significantly increase tobacco production,potassium content,the potassium and nitrogen accumulation amount of leaf,and was more conducive to the potassium uptake of tobacco leaf with wheat straw application after C/N regulation. Compared with non-straw application,the yield of tobacco increased by 6.59%,3.58%,5.98%,8.80% with application of wheat straw alone,wheat straw and vetch,wheat straw and oilseed cake,wheat straw and urea nitrogen,the potassium content in tobacco leaf increased by 3.85%,7.76%,8.82%,11.21%,respectively,the total potassium cumulative amount of leaf increased by 10.71%,11.62%,15.32% ,21.01% and the total nitrogen cumulative amount increased by 9.76%,1.22%,8.14%,14.00%. However,the differences of tobacco leaf nitrogen content among the different treatments were not significant,the phosphorus uptake of tobacco leaf decreased. [Conclusion]application of high C/N ratio wheat straw in flue-cured tobacco production,which should be concerned not only to adjust C/N ratio by adding nitrogen,but also considering additional phosphorus application.
基金Project supported by the National Natural Science Foundation of China (No.30370838).
文摘A hydroponic experiment was carried out to determine the influence of replacing 20% of nitrate-N in nutrient solutions with 20 individual amino acids on growth, nitrate accumulation, and concentrations of nitrogen (N), phosphorus (P), and potassium (K) in pak-choi (Brassica chinensis L.) shoots. When 20% of nitrate-N was replaced with arginine (Arg) compared to the full nitrate treatment, pak-choi shoot fresh and dry weights increased significantly (P ≤ 0.05), but when 20% of nitrate-N was replaced with alanine (Ala), valine (Val), leucine (Leu), isoleucine (Ile), proline (Pro), phenylalanine (Phe), methionine (Met), aspartic acid (Asp), glutamic acid (Glu), lysine (Lys), glycine (Gly), serine (Ser), threonine (Thr), cysteine (Cys), and tyrosine (Tyr), shoot fresh and dry weights decreased significantly (P ≤ 0.05). After replacing 20% of nitrate-N with asparagine (Asn) and glutamine (Gin), shoot fresh and dry weights were unaffected. Compared to the full nitrate treatment, amino acid replacement treatments, except for Cys, Gly, histidine (His), and Arg, significantly reduced (P ≤0.05) nitrate concentrations in plant shoots. Except for Cys, Leu, Pro, and Met, total N concentrations in plant tissues of the other amino acid treatments significantly increased (P ≤ 0.05). Amino acids also affected total P and K concentrations, but the effects differed depending on individual amino acids. To improve pak-choi shoot quality, Gln and Asn, due to their insignificant effects on pak-choi growth, their significant reduction in nitrate concentrations, and their increase in macroelement content in plants, may be used to partially replace nitrate-N.
基金supported by the University of Maryland Center for Environmental Science (UMCES), Horn Point Laboratory. This is UMCES contribution number 4503
文摘The effects of varying nitrogen (N): phosphorus (P) ratios on the growth and N-uptake and assimilation of the harmful dinoflagellates Prorocentrum minimum and Prorocentrum donghaiense were examined in turbidistat culture experiments. Algal cultures were supplied with media containing PO4^3- in various concentrations to obtain a wide range of N:P ratios. Experiments to determine rates of N uptake and assimilation of different N sources (NO^3-, NH4^+, urea and glycine by P. minimum and NO3^-, NH4^+ by P. donghaiense) were conducted using ^15-N tracer techniques at each N:P ratio. The growth rates suggested nutrient limitation at both high and low N:P ratios relative to the Redfield ratio. On a diel basis, the growth of both species was regulated by the light-dark cycle, which may be a result of regulation of both lightdependent growth and light-independent nutrient uptake. Maximum growth rates of both species always occurred at the beginning of light phase. In P-rich medium (low N:P ratio), both species had higher N assimilation rates, suggesting N limitation. Low assimilation coefficients at high N:P ratios suggested P limitation of N uptake and assimilation. NO3 ^-and NH4^+ contributed more than 90% of the total N uptake of P. minimum. Reduced N sources were more quickly assimilated than NO3^-. Highest average daily growth rates were recorded near an N:P ratio of 12 for both species. The N uptake rates of cultures at N:P ratios near Redfield ratio were more balanced with growth rates. The linkage between growth rates and N uptake/assimilation rates were conceptually described by the variation of cell N quota. The N:P ratios affect the N uptake and growth of Prorocentrum spp., and may regulate their bloom progression in eutrophic ecosystems.
基金supported by the National Natural Science Foundation of China (No. 40906061)the Science and Technology Plan Projects of Qingdao (No. 12-1-364-nsh)+1 种基金the ‘Two Districts’ Foundation of Shandong Province, China (No. 2011-Yellow-19)the Talent Foundation of Qingdao Agricultural University (No. 630642)
文摘The growth, biochemical content and bioaccumulation quantity of 2,2',4,4'-tetrabromodiphenyl ether(BDE-47) in Skeletonema costatum were studied under different N:P ratios(1, 4, 16, 64 and 128). All cellular biochemical contents of S. costatum presented decreasing trend over cultivation time. At early stage of cultivation, the cellular protein, carbohydrate and lipid in S. costatum presented higher values in treatments of N:P=4 and 16. However, they were lower in these treatments at the late stage, but higher in treatments N:P=1 and 128. Similarly, BDE-47 levels per cell of S. costatum were higher in treatments of N:P=4 and 16 at early stage of cultivation, which were 3.8 and 3.7 ng(106 cells)-1, respectively. At the middle stage of cultivation, the BDE-47 level per S. costatum cell lowered; and it further reduced in the treatments of N:P=4 and 16 at the late stage with the values 0.6 and 0.5 ng(106 cells)-1, respectively. However, it rose in N:P=128, reaching up to 2.3 ng(106 cells)-1. Compared with BDE-47 per cell, BDE-47 per algal volume under different N:P ratios did not present obvious difference. The quantity BDE-47 accumulated per cell of S. costatum was positively correlated with protein, carbohydrate and lipid per cell; meanwhile, the BDE-47 per volume had a positive correlation with biochemical content per volume. The variation of bioaccumulation ability of BDE-47 in S. costatum can be explained by biochemical changes due to N:P ratios.
基金supported by the National Natural Science Foundation of China (41076065)the Major State Basic Research Development Program of China (2010CB428701)
文摘Interactions between Skeletonema costatum (S. costatum) and Prorocentrum donghaiense (P. donghaiiense) were inves-tigated using bi-algal cultures at different concentrations of phosphate (PO4-P) and nitrate/phosphate (N/P) ratios. Experiments were conducted under P-limited conditions and the Lotka-Volterra mathematical model was used to simulate the growth of S. costatum and P. donghaiense in the bi-algal cultures. Both of these two species were inhibited significantly in bi-algal culture. The results of the simulation showed that the inhibitory degree of S. costaum by P. donghaiense was high when the concentration of PO4-P was low (0.1μmolL-1/2 d), but that of P. donghaiense by S. costaum was high with increased PO4-P supply (0.6μmolL-1/2 d). At low concen-tration of PO4-P (0.1μmolL-1/2 d), or high concentration of PO4-P (0.6μmolL-1/2 d) with high N/P ratio (160), the interactions be-tween S. costatum and P. donghaiense were dependent on the initial cell densities of both species. At high concentration of PO4-P (0.6μmolL-1/2 d) with low N/P ratio (25 or 80), S. costatum exhibited a survival strategy superior to that of P. donghaiense. The de-gree of inhibition of P. donghaiense by S. costaum increased with elevated N/P ratio when the medium was supplemented with con-centration 0.1μmolL-1/2 d of PO4-P. The degree of inhibition to P. donghaiense by S. costaum increased with elevated N/P ratio at low concentration of PO4-P (0.1 μmolL-1/2 d). This trend was conversed at high concentration of PO4-P (0.6μmolL-1/2 d). However, the degree of inhibition of S. costaum by P. donghaiense increased with the increased N/P ratio at different PO4-P concentrations (0.1μmolL-1/2 d and 0.6μmolL-1/2 d). These results suggested that both phosphate concentration and N/P ratio affected the competition between S. costaum and P. donghaiense: P. donghaiense is more competitive in environments with low phosphate or high N/P ratio and the influence of N/P ratio on the competition was more significant with lower phosphate concentration.