BACKGROUND Acute exacerbation of chronic obstructive pulmonary disease(AECOPD)is a serious complication of chronic obstructive pulmonary disease,often characterized by increased morbidity and mortality.In traditional ...BACKGROUND Acute exacerbation of chronic obstructive pulmonary disease(AECOPD)is a serious complication of chronic obstructive pulmonary disease,often characterized by increased morbidity and mortality.In traditional Chinese medicine,AECOPD is linked to phlegm-heat and blood-stasis,presenting symptoms like thick sputum,fever,and chest pain.It has been shown that acetylcysteine inhalation in conjunction with conventional therapy significantly reduced inflammatory markers and improved lung function parameters in patients with AECOPD,suggesting that acetylcysteine may be an important adjunctive therapy for patients with phlegm-heat-blood stasis type AECOPD.AIM To investigate the effect of acetylcysteine on microinflammation and lung ventilation in patients with phlegm-heat and blood-stasis-type AECOPD.METHODS One hundred patients with phlegm-heat and blood-stasis-type AECOPD were randomly assigned to two groups.The treatment group received acetylcysteine inhalation(10%solution,5 mL,twice daily)along with conventional therapy,whereas the control group received only conventional therapy.The treatment duration was 14 d.Inflammatory markers(C-reactive protein,interleukin-6,and tumor necrosis factor-alpha)in the serum and sputum as well as lung function parameters(forced expiratory volume in one second,forced vital capacity,and peak expiratory flow)were assessed pre-and post-treatment.Acetylcysteine inhalation led to significant reductions in inflammatory markers and improvements in lung function parameters compared to those in the control group(P<0.05).This suggests that acetylcysteine could serve as an effective adjunct therapy for patients with phlegm-heat and blood-stasis-type AECOPD.RESULTS Acetylcysteine inhalation significantly reduced inflammatory markers in the serum and sputum and improved lung ventilation function parameters in patients with phlegm-heat and blood-stasis type AECOPD compared with the control group.These differences were statistically significant(P<0.05).The study concluded that acetylcysteine inhalation had a positive effect on microinflammation and lung ventilation function in patients with this type of AECOPD,suggesting its potential as an adjuvant therapy for such cases.CONCLUSION Acetylcysteine inhalation demonstrated significant improvements in reducing inflammatory markers in the serum and sputum,as well as enhancing lung ventilation function parameters in patients with phlegm-heat and bloodstasis type AECOPD.These findings suggest that acetylcysteine could serve as a valuable adjuvant therapy for individuals with this specific type of AECOPD,offering benefits for managing microinflammation and optimizing lung function.展开更多
Objective To evaluate the antagonistic effects of N-acetylcysteine(NAC)on mitogen-activated protein kinases(MAPK)pathway activation,oxidative stress and inflammatory responses in rats with lung injury induced by fine ...Objective To evaluate the antagonistic effects of N-acetylcysteine(NAC)on mitogen-activated protein kinases(MAPK)pathway activation,oxidative stress and inflammatory responses in rats with lung injury induced by fine particulate matter(PM2.5).Methods Forty eight male Wistar rats were randomly divided into six groups:blank control group(C1),water drip control group(C2),PM2.5 exposed group(P),low-dose NAC treated and PM2.5 exposed group(L),middle-dose NAC treated and PM2.5 exposed group(M),and high-dose NAC treated and PM2.5 exposed group(H).PM2.5 suspension(7.5 mg/kg)was administered tracheally once a week for four times.NAC of 125 mg/kg,250 mg/kg and 500 mg/kg was delivered intragastrically to L,M and H group respectively by gavage(10 ml/kg)for six days before PM2.5 exposure.The histopathological changes and human mucin 5 subtype AC(MUC5AC)content in lung tissue of rats were evaluated.We investigated IL-6 in serum and bronchoalveolar lavage fluid(BALF)by Enzyme-linked immunosorbent assay(ELISA),MUC5AC in lung tissue homogenate by ELISA,glutathione peroxidase(GSH-PX)in serum and BALF by spectrophotometry,and the expression of p-ERK1/2,p-JNK1/2 and p-p38 proteins by Western blot.All the measurements were analyzed and compared statistically.Results Lung tissue of rats exposed to PM2.5 showed histological destruction and increased mucus secretion of bronchial epithelial cells.Rats receiving NAC treatment showed less histological destruction and mucus secretion.Of P,L,M and H group,MUC5AC in lung tissue,IL-6 in serum and BALF were higher than controls(C1 and C2)(all P<0.05),with the highest levels found in the P group and a decreasing trend with increase of NAC dose.The activity of GSH-PX in serum and BALF of PM2.5 exposed rats(P,L,M and H)was lower than that of controls(all P<0.05),with higher activities found in NAC treated rats(L,M,and H),and an increasing trend with increase of NAC dose.The expressions of p-ERK1/2,p-JNK1/2 and p-p38 proteins in PM2.5 exposed lung tissue(P,L,M and H)was higher than controls(all P<0.05),with decreased levels and dose dependent downregulation found in NAC treated rats.Conclusion NAC can antagonize major MAPK pathway activation,lung oxidative stress and inflammatory injury induced by PM2.5 in rats.展开更多
文摘BACKGROUND Acute exacerbation of chronic obstructive pulmonary disease(AECOPD)is a serious complication of chronic obstructive pulmonary disease,often characterized by increased morbidity and mortality.In traditional Chinese medicine,AECOPD is linked to phlegm-heat and blood-stasis,presenting symptoms like thick sputum,fever,and chest pain.It has been shown that acetylcysteine inhalation in conjunction with conventional therapy significantly reduced inflammatory markers and improved lung function parameters in patients with AECOPD,suggesting that acetylcysteine may be an important adjunctive therapy for patients with phlegm-heat-blood stasis type AECOPD.AIM To investigate the effect of acetylcysteine on microinflammation and lung ventilation in patients with phlegm-heat and blood-stasis-type AECOPD.METHODS One hundred patients with phlegm-heat and blood-stasis-type AECOPD were randomly assigned to two groups.The treatment group received acetylcysteine inhalation(10%solution,5 mL,twice daily)along with conventional therapy,whereas the control group received only conventional therapy.The treatment duration was 14 d.Inflammatory markers(C-reactive protein,interleukin-6,and tumor necrosis factor-alpha)in the serum and sputum as well as lung function parameters(forced expiratory volume in one second,forced vital capacity,and peak expiratory flow)were assessed pre-and post-treatment.Acetylcysteine inhalation led to significant reductions in inflammatory markers and improvements in lung function parameters compared to those in the control group(P<0.05).This suggests that acetylcysteine could serve as an effective adjunct therapy for patients with phlegm-heat and blood-stasis-type AECOPD.RESULTS Acetylcysteine inhalation significantly reduced inflammatory markers in the serum and sputum and improved lung ventilation function parameters in patients with phlegm-heat and blood-stasis type AECOPD compared with the control group.These differences were statistically significant(P<0.05).The study concluded that acetylcysteine inhalation had a positive effect on microinflammation and lung ventilation function in patients with this type of AECOPD,suggesting its potential as an adjuvant therapy for such cases.CONCLUSION Acetylcysteine inhalation demonstrated significant improvements in reducing inflammatory markers in the serum and sputum,as well as enhancing lung ventilation function parameters in patients with phlegm-heat and bloodstasis type AECOPD.These findings suggest that acetylcysteine could serve as a valuable adjuvant therapy for individuals with this specific type of AECOPD,offering benefits for managing microinflammation and optimizing lung function.
文摘Objective To evaluate the antagonistic effects of N-acetylcysteine(NAC)on mitogen-activated protein kinases(MAPK)pathway activation,oxidative stress and inflammatory responses in rats with lung injury induced by fine particulate matter(PM2.5).Methods Forty eight male Wistar rats were randomly divided into six groups:blank control group(C1),water drip control group(C2),PM2.5 exposed group(P),low-dose NAC treated and PM2.5 exposed group(L),middle-dose NAC treated and PM2.5 exposed group(M),and high-dose NAC treated and PM2.5 exposed group(H).PM2.5 suspension(7.5 mg/kg)was administered tracheally once a week for four times.NAC of 125 mg/kg,250 mg/kg and 500 mg/kg was delivered intragastrically to L,M and H group respectively by gavage(10 ml/kg)for six days before PM2.5 exposure.The histopathological changes and human mucin 5 subtype AC(MUC5AC)content in lung tissue of rats were evaluated.We investigated IL-6 in serum and bronchoalveolar lavage fluid(BALF)by Enzyme-linked immunosorbent assay(ELISA),MUC5AC in lung tissue homogenate by ELISA,glutathione peroxidase(GSH-PX)in serum and BALF by spectrophotometry,and the expression of p-ERK1/2,p-JNK1/2 and p-p38 proteins by Western blot.All the measurements were analyzed and compared statistically.Results Lung tissue of rats exposed to PM2.5 showed histological destruction and increased mucus secretion of bronchial epithelial cells.Rats receiving NAC treatment showed less histological destruction and mucus secretion.Of P,L,M and H group,MUC5AC in lung tissue,IL-6 in serum and BALF were higher than controls(C1 and C2)(all P<0.05),with the highest levels found in the P group and a decreasing trend with increase of NAC dose.The activity of GSH-PX in serum and BALF of PM2.5 exposed rats(P,L,M and H)was lower than that of controls(all P<0.05),with higher activities found in NAC treated rats(L,M,and H),and an increasing trend with increase of NAC dose.The expressions of p-ERK1/2,p-JNK1/2 and p-p38 proteins in PM2.5 exposed lung tissue(P,L,M and H)was higher than controls(all P<0.05),with decreased levels and dose dependent downregulation found in NAC treated rats.Conclusion NAC can antagonize major MAPK pathway activation,lung oxidative stress and inflammatory injury induced by PM2.5 in rats.