In this study, we investigate the effects of Ga N cap layer thickness on the two-dimensional electron gas(2DEG)electron density and 2DEG electron mobility of Al N/Ga N heterostructures by using the temperature-depen...In this study, we investigate the effects of Ga N cap layer thickness on the two-dimensional electron gas(2DEG)electron density and 2DEG electron mobility of Al N/Ga N heterostructures by using the temperature-dependent Hall measurement and theoretical fitting method. The results of our analysis clearly indicate that the Ga N cap layer thickness of an Al N/Ga N heterostructure has influences on the 2DEG electron density and the electron mobility. For the Al N/Ga N heterostructures with a 3-nm Al N barrier layer, the optimized thickness of the Ga N cap layer is around 4 nm and the strained a-axis lattice constant of the Al N barrier layer is less than that of Ga N.展开更多
Host ANP32 family proteins are crucial for maintaining the activity of influenza RNA polymerase and play an important role in the cross-species transmission of influenza viruses.To date,the molecular properties of equ...Host ANP32 family proteins are crucial for maintaining the activity of influenza RNA polymerase and play an important role in the cross-species transmission of influenza viruses.To date,the molecular properties of equine ANP32(eqANP32)protein are poorly understood,particularly the mechanisms that affect equine influenza virus(EIV)RNA polymerase activity.Here,we found that there are six alternative splicing variants of equine ANP32A(eqANP32A)with different levels of expression.Further studies showed that these six splicing variants of eqANP32A supported the activity of EIV RNA polymerase to varying degrees,with the variant eqANP32A_X2 having the highest expression abundance and exhibiting the highest support of polymerase activity.Sequence analysis demonstrated that the differences in the N-Cap regions of the six splicing variants significantly affected their N-terminal conformation,but did not affect their ability to bind RNA polymerase.We also demonstrated that there is only one transcript of eqANP32B,and that this transcript showed only very low support to the EIV RNA polymerase.This functional defect in eqANP32B is caused by the sequence of the 110–259 amino acids at its Cterminus.Our results indicated that it is the eqANP32A_X2 protein that mainly determines the efficiency of the EIV replication in horses.In conclusion,our study parsed the molecular properties of eqANP32 family proteins and revealed the sequence features of eqANP32A and eqANP32B,suggesting for the first time that the N-Cap region of ANP32A protein also plays an important role in supporting the activity of the influenza virus polymerase.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11174182 and 61306113)the Specialized Research Fund for the Doctoral Program of Higher Education,China(Grant No.20110131110005)
文摘In this study, we investigate the effects of Ga N cap layer thickness on the two-dimensional electron gas(2DEG)electron density and 2DEG electron mobility of Al N/Ga N heterostructures by using the temperature-dependent Hall measurement and theoretical fitting method. The results of our analysis clearly indicate that the Ga N cap layer thickness of an Al N/Ga N heterostructure has influences on the 2DEG electron density and the electron mobility. For the Al N/Ga N heterostructures with a 3-nm Al N barrier layer, the optimized thickness of the Ga N cap layer is around 4 nm and the strained a-axis lattice constant of the Al N barrier layer is less than that of Ga N.
基金the National Natural Science Foundation of China to HL Zhang(32002275)Natural Science Foundation of Heilongjiang Province of China to HL Zhang(YQ2020C021).
文摘Host ANP32 family proteins are crucial for maintaining the activity of influenza RNA polymerase and play an important role in the cross-species transmission of influenza viruses.To date,the molecular properties of equine ANP32(eqANP32)protein are poorly understood,particularly the mechanisms that affect equine influenza virus(EIV)RNA polymerase activity.Here,we found that there are six alternative splicing variants of equine ANP32A(eqANP32A)with different levels of expression.Further studies showed that these six splicing variants of eqANP32A supported the activity of EIV RNA polymerase to varying degrees,with the variant eqANP32A_X2 having the highest expression abundance and exhibiting the highest support of polymerase activity.Sequence analysis demonstrated that the differences in the N-Cap regions of the six splicing variants significantly affected their N-terminal conformation,but did not affect their ability to bind RNA polymerase.We also demonstrated that there is only one transcript of eqANP32B,and that this transcript showed only very low support to the EIV RNA polymerase.This functional defect in eqANP32B is caused by the sequence of the 110–259 amino acids at its Cterminus.Our results indicated that it is the eqANP32A_X2 protein that mainly determines the efficiency of the EIV replication in horses.In conclusion,our study parsed the molecular properties of eqANP32 family proteins and revealed the sequence features of eqANP32A and eqANP32B,suggesting for the first time that the N-Cap region of ANP32A protein also plays an important role in supporting the activity of the influenza virus polymerase.