(N, F)-codoped anatase TiO2 nanocrystals with active visible light response were prepared by using a simple sol-gel approach. X-ray photoelectron spectroscopy measurements suggested that the substitutional N and F s...(N, F)-codoped anatase TiO2 nanocrystals with active visible light response were prepared by using a simple sol-gel approach. X-ray photoelectron spectroscopy measurements suggested that the substitutional N and F species replaced the lattice oxygen atoms in TiO2 nanocrystals. Such nanocrystals showed strong absorption from 400 to 550 nm, which was mainly induced by nitrogen doping. The phase transformation from anatase to rutile was hindered by fluorine doping at high calcination temperatures, which was verified by XRD patterns. The N2 adsorption-desorption isotherms revealed the absence of mesopores in these nanocrystals. The (N, F)- codoped TiO2 nanocrystals showed satisfying photocatalytic activity on the photo-degradation of methylene blue under visible light.展开更多
Fluoride processing of natural ilmenite with the use of ammonium hydrogen difluoride (NH4HF2) as an effective fluorinating agent is suggested. Chemistry, composition, structure, thermal and hydrolytic properties of fl...Fluoride processing of natural ilmenite with the use of ammonium hydrogen difluoride (NH4HF2) as an effective fluorinating agent is suggested. Chemistry, composition, structure, thermal and hydrolytic properties of fluorination products were investigated. Ammonium fluoro- and oxofluorotitanates are suitable for preparing of titanium dioxide as pigmentary product or as doped by nitrogen and fluorine.展开更多
N-F-codoped TiO2 (NFTO) photocatalysts were synthesized by a simple sol-gel process with tetrabutyl titanate (Ti(OBu)4 ) as the precursor of TiO 2 and ammonium fluoride (NH4 F) as the source of N and F.The syn...N-F-codoped TiO2 (NFTO) photocatalysts were synthesized by a simple sol-gel process with tetrabutyl titanate (Ti(OBu)4 ) as the precursor of TiO 2 and ammonium fluoride (NH4 F) as the source of N and F.The synthesized photocatalysts were investigated by X- ray diffraction (XRD),X-ray photoelectron spectroscopy (XPS),ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis DRS) and photodegradation reaction tests of 4-chlorophenol under visible light irradiation to understand the relationship between the structure of NFTO catalyst and corresponding photocatalytic activity.The crystal phase and particle size of catalysts were found to be largely affected by the calcination temperature.In addition,N-F-codoping could inhibit phase transition of TiO2 from anatase to rutile.The presence of N and F atoms in the lattice of TiO2 is responsible for the visible light catalytic activity.In UV-Vis DRS tests,the spectrum of NFTO exhibited red shift compared with Degussa P25 and the band gap was reduced to around 2.92 eV.Under optimal calcination temperature and dopant concentration conditions,the NFTO photocatalyst exhibited the highest activity in the photodegradation reaction tests of 4-chlorophenol under visible light irradiation with a degradation rate of 75.84%.Besides,the 5-recycle test showed that NFTO photocatalyst could be reused and its activity kept stable under visible light irradiation.展开更多
The removal of volatile organic compounds by photocatalytic degradation is one of the safest and most effective ways of removing pollutants from the air. This process is highly affected by the type of reactor, light e...The removal of volatile organic compounds by photocatalytic degradation is one of the safest and most effective ways of removing pollutants from the air. This process is highly affected by the type of reactor, light exposure, and hydrodynamics. For scale up purposes, continuous reactors with high capacity are required for treating large amounts of feedstock. In this work, two types of reactors based on different hydrodynamics, fluidized and spouted reactors, were designed to work under light irradiation inside the reactor. The efficiency of the reactors for volatile organic compound removal from high flow rates of air under Hg lamp irradiation using N-F-TiO2 photocatalyst was investigated. The performance of the fluidized bed and spouted bed were evaluated and compared at the same weight hourly space velocity of feed stream through the reactor. The results revealed that 80% of the initial acetaldehyde was removed in the fluidized bed after about 200 min, while in the spouted bed the acetaldehyde was totally removed after about 120 min.展开更多
基金supported by the Excellent Young Teachers Program of MOEKey Project of Shanghai Science and Technology Committee (No. 06DZ05025),China
文摘(N, F)-codoped anatase TiO2 nanocrystals with active visible light response were prepared by using a simple sol-gel approach. X-ray photoelectron spectroscopy measurements suggested that the substitutional N and F species replaced the lattice oxygen atoms in TiO2 nanocrystals. Such nanocrystals showed strong absorption from 400 to 550 nm, which was mainly induced by nitrogen doping. The phase transformation from anatase to rutile was hindered by fluorine doping at high calcination temperatures, which was verified by XRD patterns. The N2 adsorption-desorption isotherms revealed the absence of mesopores in these nanocrystals. The (N, F)- codoped TiO2 nanocrystals showed satisfying photocatalytic activity on the photo-degradation of methylene blue under visible light.
文摘Fluoride processing of natural ilmenite with the use of ammonium hydrogen difluoride (NH4HF2) as an effective fluorinating agent is suggested. Chemistry, composition, structure, thermal and hydrolytic properties of fluorination products were investigated. Ammonium fluoro- and oxofluorotitanates are suitable for preparing of titanium dioxide as pigmentary product or as doped by nitrogen and fluorine.
基金supported by the Scienceand Technology Project of Education Commission of Chongqing of China(No.KJ110709)the Key Science Project of Ministry of Education of China(No.2008119)+1 种基金the Colleges and Universities Innovation Team Project of Chongqing of China(No.KJTD201020)the Scienceand Technology Project of Engineering Research Centre for Waste Oil,Ministry of Education of China(No.FYKJ2009012)
文摘N-F-codoped TiO2 (NFTO) photocatalysts were synthesized by a simple sol-gel process with tetrabutyl titanate (Ti(OBu)4 ) as the precursor of TiO 2 and ammonium fluoride (NH4 F) as the source of N and F.The synthesized photocatalysts were investigated by X- ray diffraction (XRD),X-ray photoelectron spectroscopy (XPS),ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis DRS) and photodegradation reaction tests of 4-chlorophenol under visible light irradiation to understand the relationship between the structure of NFTO catalyst and corresponding photocatalytic activity.The crystal phase and particle size of catalysts were found to be largely affected by the calcination temperature.In addition,N-F-codoping could inhibit phase transition of TiO2 from anatase to rutile.The presence of N and F atoms in the lattice of TiO2 is responsible for the visible light catalytic activity.In UV-Vis DRS tests,the spectrum of NFTO exhibited red shift compared with Degussa P25 and the band gap was reduced to around 2.92 eV.Under optimal calcination temperature and dopant concentration conditions,the NFTO photocatalyst exhibited the highest activity in the photodegradation reaction tests of 4-chlorophenol under visible light irradiation with a degradation rate of 75.84%.Besides,the 5-recycle test showed that NFTO photocatalyst could be reused and its activity kept stable under visible light irradiation.
文摘The removal of volatile organic compounds by photocatalytic degradation is one of the safest and most effective ways of removing pollutants from the air. This process is highly affected by the type of reactor, light exposure, and hydrodynamics. For scale up purposes, continuous reactors with high capacity are required for treating large amounts of feedstock. In this work, two types of reactors based on different hydrodynamics, fluidized and spouted reactors, were designed to work under light irradiation inside the reactor. The efficiency of the reactors for volatile organic compound removal from high flow rates of air under Hg lamp irradiation using N-F-TiO2 photocatalyst was investigated. The performance of the fluidized bed and spouted bed were evaluated and compared at the same weight hourly space velocity of feed stream through the reactor. The results revealed that 80% of the initial acetaldehyde was removed in the fluidized bed after about 200 min, while in the spouted bed the acetaldehyde was totally removed after about 120 min.