Nonradiative recombination (NRR) centers in n-type GaN samples grown by MOCVD technique on a LT-GaN buffer layer and aAlN buffer layer have been studied by two wavelength excited photoluminescence (TWEPL). The near ba...Nonradiative recombination (NRR) centers in n-type GaN samples grown by MOCVD technique on a LT-GaN buffer layer and aAlN buffer layer have been studied by two wavelength excited photoluminescence (TWEPL). The near band-edge photoluminescence (PL) intensity decreases due to the superposition of below-gap excitation (BGE) light of energies 0.93, 1.17 and 1.27 eV over above-gap excitation (AGE) light of energy 4.66 eV. The decrease in PL intensity due to the addition of the BGE has been explained by a two levels recombination model based on SRH statistics. It indicates the presence of a pair of NRR centers in both samples, which are activated by the BGE. The degree of quenching in PL intensity for the sample grown on LT-GaN buffer layer is stronger than the sample grown on AlN buffer layer for all BGE sources. This result implies that the use of the AlN buffer layer is more effective for reducing the NRR centers in n-GaN layers than the LT-GaN buffer layer. The dependence of PL quenching on the AGE density, the BGE density and temperature has been also investigated. The NRR parameters have been quantitatively determined by solving rate equations and fitting the simulated results with the experimental data.展开更多
GaN-based vertical P-i-N diode with mesa edge terminal structure due to electric field crowding effect, the breakdown voltage of the device is significantly reduced. This work investigates three terminal structures, i...GaN-based vertical P-i-N diode with mesa edge terminal structure due to electric field crowding effect, the breakdown voltage of the device is significantly reduced. This work investigates three terminal structures, including deeply etched, bevel, and stepped-mesas terminal structures, to suppress electric field crowding effects at the device and junction edges. Deeply-etched mesa terminal yields a breakdown voltage of 1205 V, i.e., 89% of the ideal voltage. The bevel-mesa terminal achieves about 89% of the ideal breakdown voltage, while the step-mesa terminal is less effective in mitigating electric field crowding, at about 32% of the ideal voltage. This work can provide an important reference for the design of high-power, high-voltage GaN-based P-i-N power devices, finding a terminal protection structure suitable for GaNPiN diodes to further enhance the breakdown performance of the device and to unleash the full potential of GaN semiconductor materials.展开更多
文摘Nonradiative recombination (NRR) centers in n-type GaN samples grown by MOCVD technique on a LT-GaN buffer layer and aAlN buffer layer have been studied by two wavelength excited photoluminescence (TWEPL). The near band-edge photoluminescence (PL) intensity decreases due to the superposition of below-gap excitation (BGE) light of energies 0.93, 1.17 and 1.27 eV over above-gap excitation (AGE) light of energy 4.66 eV. The decrease in PL intensity due to the addition of the BGE has been explained by a two levels recombination model based on SRH statistics. It indicates the presence of a pair of NRR centers in both samples, which are activated by the BGE. The degree of quenching in PL intensity for the sample grown on LT-GaN buffer layer is stronger than the sample grown on AlN buffer layer for all BGE sources. This result implies that the use of the AlN buffer layer is more effective for reducing the NRR centers in n-GaN layers than the LT-GaN buffer layer. The dependence of PL quenching on the AGE density, the BGE density and temperature has been also investigated. The NRR parameters have been quantitatively determined by solving rate equations and fitting the simulated results with the experimental data.
文摘GaN-based vertical P-i-N diode with mesa edge terminal structure due to electric field crowding effect, the breakdown voltage of the device is significantly reduced. This work investigates three terminal structures, including deeply etched, bevel, and stepped-mesas terminal structures, to suppress electric field crowding effects at the device and junction edges. Deeply-etched mesa terminal yields a breakdown voltage of 1205 V, i.e., 89% of the ideal voltage. The bevel-mesa terminal achieves about 89% of the ideal breakdown voltage, while the step-mesa terminal is less effective in mitigating electric field crowding, at about 32% of the ideal voltage. This work can provide an important reference for the design of high-power, high-voltage GaN-based P-i-N power devices, finding a terminal protection structure suitable for GaNPiN diodes to further enhance the breakdown performance of the device and to unleash the full potential of GaN semiconductor materials.