Objective To investigate N-myc downstream-regulated gene 2(NDRG2) expression in ovarian cancer cells and its potential usefulness as a diagnostic marker and/or target for therapeutic intervention.Methods Human NDRG2 L...Objective To investigate N-myc downstream-regulated gene 2(NDRG2) expression in ovarian cancer cells and its potential usefulness as a diagnostic marker and/or target for therapeutic intervention.Methods Human NDRG2 L/S gene was obtained by revers-transcription polymerase chain reaction(RT-PCR). Sequence analysis confirmed the identity of NDRG2 L/S gene, which was then inserted into a eukaryotic vector p LNCX2, which was in turn transfected into NDRG2 gene-negative HO-8910 cells. Flow cytometry(FCM) and 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide(MTT) assay were conducted to determine the proliferation rate of HO-8910 cells. Cisplatin resistance of HO-8910 cells transfected with p LNCX2-NDRG2 L/S was evaluated by FCM. Tumors were generated in female nude mice by subcutaneous injection of HO-8910 cells.Results NDRG2 gene was isolated and its expression vector was successfully constructed. NDRG2 expression positively correlated with the proliferation of HO-8910 cells. NDRG2 L/S promoted tumorigenicity in HO-8910 cells.Conclusion The present study identified a novel function of NDRG2 L/S gene and demonstrated its involvement in the promotion of ovarian cancer cell proliferation and enhancement of cisplatin resistance in HO-8910 cells. Future studies are warranted to determine the relationship between NDRG2 upregulation and ovarian cancer progression.展开更多
The expression of N-myc down-regulated gene 1 (NDRG1) has previously been reported to be involved in the proliferation,differentiation,invasion and metastasis of cancer cells,but its role in cervical cancer is still u...The expression of N-myc down-regulated gene 1 (NDRG1) has previously been reported to be involved in the proliferation,differentiation,invasion and metastasis of cancer cells,but its role in cervical cancer is still unclear.This study aimed to investigate the expression of NDRG1gene in human cervical cancer and its effect on aggressive tumor behaviors.The NDRG1 expression in cervical tissues and cells was detected by RT-PCR.Specific expression plasmid pEGFP-N1-NDRG1-GFP was used to enhance the expression of NDRG1 in human cervical cancer cell lines.The mRNA and protein level of NDRG1 was assessed by RT-PCR and Western blotting,respectively.Its effects on cell proliferation,migration,invasion,cell cycle and apoptosis were detected by MTT,transwell migration assay and flow cytometry (FCM),respectively.The results showed that the expression of NDRG1 in cervical cancer tissues and cells was significantly lower than in normal cervical tissues (P【0.001).After transfection with pEGFP-N1-NDRG1-GFP,the mRNA and protein expression of NDRG1 was up-regulated in Siha cells,which suppressed cell proliferation (P【0.001),induced cell cycle arrest (P【0.05),reduced invasion and migration of Siha cells (P【0.05),but caused no cell apoptosis.Moreover,vascular endothelial growth factor (VEGF),a tumor-induced angiogenesis factor,was markedly reduced and E-cadherin,a cell adhesion molecule,was increased in the cells transfected with pEGFP-N1-NDRG1-GFP.It was concluded that up-regulated NDRG1 may play a role in the suppression of malignant cell growth,invasion and metastasis of human cervical cancer.展开更多
BACKGROUND Invasion and migration are the irreversible stages of colorectal cancer(CRC).The key is to find a sensitive,reliable molecular marker that can predict the migration of CRC at an early stage.N-myc downstream...BACKGROUND Invasion and migration are the irreversible stages of colorectal cancer(CRC).The key is to find a sensitive,reliable molecular marker that can predict the migration of CRC at an early stage.N-myc downstream regulated gene 1(NDRG1)is a multifunctional gene that has been tentatively reported to have a strong relationship with tumor invasion and migration,however the current molecular role of NDRG1 in CRC remains unknown.AIM To explore the role of NDRG1 in the development of CRC.METHODS NDRG1 stably over-expressed Caco2 cell line was established by lentiviral infection and NDRG1 knock-out Caco2 cell line was established by CRISPR/Cas9.Furthermore,the mRNA and protein levels of NDRG1 in Caco2 cells after NDRG1 over-expression and knockout were detected by real-time polymerase chain reaction and western blot.The cell proliferation rate was measured by the cell counting kit-8 method;cell cycle and apoptosis were detected by flow cytometry;invasion and migration ability were detected by the 24-transwell method.RESULTS NDRG1 over-expression inhibited Caco2 proliferation and the cell cycle could be arrested at the G1/S phase when NDRG1 was over-expressed,while the number of cells in the G2 phase was significantly increased when NDRG1 was knocked out.This suggests that NDRG1 inhibited the proliferation of Caco2 cells by arresting the cell cycle in the G1/S phase.Our data also demonstrated that NDRG1 promotes early cell apoptosis.Invasion and migration of cells were extensively inhibited when NDRG1 was over-expressed.CONCLUSION NDRG1 inhibits tumor progression in Caco2 cells which may represent a potential novel therapeutic strategy for the treatment of CRC.展开更多
AIM: To study short ds RNA oligonucleotides(si RNA)as a potent tool for artificially modulating gene expression of N-Myc down regulated gene 1(NDRG1) gene induced under different physiological conditions(Normoxia and ...AIM: To study short ds RNA oligonucleotides(si RNA)as a potent tool for artificially modulating gene expression of N-Myc down regulated gene 1(NDRG1) gene induced under different physiological conditions(Normoxia and hypoxia) modulating NDRG1 transcription, m RNA stability and translation. METHODS: A cell line established from a patient with glioblastoma multiforme. Plasmid DNA for transfections was prepared with the Endofree Plasmid Maxi kit. From plates containing 5 × 107 cells, nuclear extracts were prepared according to previous protocols. The p SUPERNDRG1 vectors were designed, two sequences were selected from the human NDRG1 c DNA(5'-GCATTATTGGCATGGGAAC-3' and 5'-ATGCAGAGTAACGTGGAAG-3'. reverse transcription polymerase chain reaction was performed using primers designed using published information on β-actin and hypoxia-inducible factor(HIF)-1α m RNA sequences in Gen Bank. NDRG1 m RNA and protein level expression results under different conditions of hypoxia or reoxygenation were compared to aerobic control conditions using the Mann-Whitney U test. Reoxygenation values were also compared to the NDRG1 levels after 24 h of hypoxia(P < 0.05 was considered significant).RESULTS: si RNA- and iodoacetate(IAA)-mediated downregulation of NDRG1 m RNA and protein expression in vitro in human glioblastoma cell lines showed a nearly complete inhibition of NDRG1 expression when compared to the results obtained due to the inhibitory role of glycolysis inhibitor IAA. Hypoxia responsive elements bound by nuclear HIF-1 in human glioblastoma cells in vitro under different oxygenation conditions and the clearly enhanced binding of nuclear extracts from glioblastoma cell samples exposed to extreme hypoxic conditions confirmed the HIF-1 Western blotting results. CONCLUSION: NDRG1 represents an additional diagnostic marker for brain tumor detection, due to the role of hypoxia in regulating this gene, and it canrepresent a potential target for tumor treatment in human glioblastoma. The si RNA method can represent an elegant alternative to modulate the expression of the hypoxia induced NDRG1 gene and can help to monitor the development of the cancer disease treatment outcome through monitoring the expression of this gene in the patients undergoing the different therapeutic treatment alternatives available nowadays.展开更多
Plasmid expressing small interfering RNA (siRNA) against HIF-1α (pSilence-2.1-U6-siRNA) was constructed and transfected into LS174T cells in hypoxia condition.After expression of siRNA against HIF-1 α in LS174T ...Plasmid expressing small interfering RNA (siRNA) against HIF-1α (pSilence-2.1-U6-siRNA) was constructed and transfected into LS174T cells in hypoxia condition.After expression of siRNA against HIF-1 α in LS174T cells, expressions of HIF-1 α and N-myc downstream regulated gene 1 (NDRG1) gene were inhibited significantly. HIF-1 cta transcripts were positive in 67.7% (42/62) and 44.4% (8/18) of colorectal adenocarcinoma and adenoma, re- spectively. The mean percentage of cells with positive hybridization of HIF-1 α mRNA increases with the development from Duke stage A to stage C+D (p〈 0.05). The positive staining rate of NDRG1 protein was significant higher in than that in colorectal adenoma colorectal adenocarcinoma group group (p〈 0.05). The level of HIF-1 a transcripts was positively correlated with the level of NDRG1 protein (p 〈 0.05) during colorectal tumor progression. HIF-1α and its down stream gene NDRG1 may play roles in tumor progression of human colorectal carcinoma.展开更多
核受体在细胞稳态的维持以及疾病的发生发展等方面发挥着重要的作用。为了探究核受体亚家族6A组成员1(nuclear receptor subfamily 6 group A member 1,NR6A1)在肝癌中的作用及机制,首先,分析了癌症基因组图谱(The Cancer Genome Atlas,...核受体在细胞稳态的维持以及疾病的发生发展等方面发挥着重要的作用。为了探究核受体亚家族6A组成员1(nuclear receptor subfamily 6 group A member 1,NR6A1)在肝癌中的作用及机制,首先,分析了癌症基因组图谱(The Cancer Genome Atlas,TCGA)等数据库信息,发现NR6A1在肝癌中异常高表达且与患者预后不良有关;然后,通过CCK-8(Cell Counting Kit-8)、5-乙炔基-2′-脱氧尿苷(5-ethynyl-2′-deoxyuridine,EdU)、划痕实验发现,干扰NR6A1使肝癌细胞的增殖明显受到抑制但不影响细胞的迁移;其次,通过免疫共沉淀、免疫荧光、RNA干扰和过表达等实验,鉴定出N-myc下游调控基因1(N-myc downstream-regulated gene 1,NDRG1)是NR6A1在肝癌中的互作蛋白质,二者在肝癌中的表达呈正相关,且NR6A1正调控NDRG1的表达;最后,利用功能拯救实验证实,干扰NDRG1可以抑制NR6A1过表达造成的肝癌细胞增殖增强的现象。综上可知,NR6A1通过与NDRG1相互结合且上调NDRG1的表达来发挥促癌作用。展开更多
The protein,N-myc downstream-regulated gene 2(NDRG2),a tumor suppressor,is significantly decreased or absent in many types of cancer.There is a significant negative correlation between the levels of NDRG2 and the deve...The protein,N-myc downstream-regulated gene 2(NDRG2),a tumor suppressor,is significantly decreased or absent in many types of cancer.There is a significant negative correlation between the levels of NDRG2 and the development and progression of cancer tumor recurrence and tumor invasion,in different cancers.In contrast,the in vitro and in vivo overexpression of the NDRG2 protein decreases the proliferation,growth,adhesion and migration of many types of cancer cells.The in vitro overexpression of NDRG2 increases the efficacy of certain anticancer drugs in specific types of cancer cells.We hypothesize that the delivery of the mRNA of the NDRG2 protein,encapsulated by lipid nanoparticles,could represent a potential treatment of metastatic and drug-resistant cancers.This would be accomplished using a self-amplifying mRNA that encodes the NDRG2 protein and an RNA-dependent-RNA polymerase,obtained from an in vitrotranscribed(IVT)mRNA.The IVT mRNA would be encapsulated in a lipid nanoformulation.The efficacy of the nanoformulation would be determined in cultured cancer cells and if the results are positive,nude mice transplanted with either drug-resistant or metastatic drug-resistant cancer cells,would be treated with the nanoformulation and monitored for efficacy and adverse effects.If the appropriate preclinical studies indicate this formulation is efficacious and safe,it is possible it could be evaluated in clinical trials.展开更多
Background: Lipoxin A4 (LXA4) can alleviate lipopolysaccharide (LPS)-induced acute lung injury (ALl) and acute respiratory distress syndrome through promoting epithelial sodium channel (ENaC) expression in lu...Background: Lipoxin A4 (LXA4) can alleviate lipopolysaccharide (LPS)-induced acute lung injury (ALl) and acute respiratory distress syndrome through promoting epithelial sodium channel (ENaC) expression in lung epithelial cells. However, how LXA4 promote ENaC expression is still largely elusive. The present study aimed to explore genes and signaling pathway involved in regulating ENaC expression induced by LXA4. Methods: A549 cells were incubated with LPS and LXA4, or in combination, and analyzed by quantitative real-time polymerase chain reaction (qRT-PCR) of ENaC-α/γ. Candidate genes affected by LXA4 were explored by transcriptome sequencing ofA549 cells. The critical candidate gene was validated by qRT-PCR and Western blot analysis ofA549 cells treated with LPS and LXA4 at different concentrations and time intervals. LXA4 receptor (ALX) inhibitor BOC-2 was used to test induction of candidate gene by LXA4. Candidate gene siRNA was adopted to analyze its influence on A549 viability and ENaC-α expression. Phosphoinositide 3-kinase (PI3K) inhibitor LY294002 was utilized to probe whether the PI3K signaling pathway was involved in LXA4 induction of candidate gene expression. Results: The A549 cell models of ALl were constrticted and subjected to transcriptome sequencing. Among candidate genes, N-myc downstream- regulated gent- 1 (NDRG 1 ) was validated by real-time-PCR and Western blot. NDRG 1 mRNA was elevated in a dose-dependent manner of LXA4, whereas BOC-2 antagonized NDRG 1 expression induced by LXA4. NDRG I siRNA suppressed viability of LPS-treated A549 cells (treatment vs. control, 0.605± 0.063 vs. 0.878 ± 0.083, P = 0.040) and ENaC-α expression (treatment vs. control, 0.458 ± 0.038 vs. 0.711 ± 0.035, P = 0.008). LY294002 inhibited NDRG 1 (treatment vs. control, 0.459 ± 0.023 vs. 0.726 ± 0.020, P 0.001 ) and ENaC-α (treatment vs. control, 0.236 ± 0.021 vs. 0.814 ±0.025, P 〈 0.001 ) expressions and serum- and glucocorticoid-inducible kinase I phosphorylation (treatment vs. control, 0.442± 0.024 vs. 1.046 ± 0.082, P = 0.002), indicating the PI3K signaling pathway was involved in regulating NDRG 1 expression induced by LXA4. Conclusion: Our research uncovered a critical role of NDRG1 in LXA4 alleviation of LPS-induced A549 cell injury through mediating PI3K signaling to restore ENaC expression.展开更多
文摘Objective To investigate N-myc downstream-regulated gene 2(NDRG2) expression in ovarian cancer cells and its potential usefulness as a diagnostic marker and/or target for therapeutic intervention.Methods Human NDRG2 L/S gene was obtained by revers-transcription polymerase chain reaction(RT-PCR). Sequence analysis confirmed the identity of NDRG2 L/S gene, which was then inserted into a eukaryotic vector p LNCX2, which was in turn transfected into NDRG2 gene-negative HO-8910 cells. Flow cytometry(FCM) and 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide(MTT) assay were conducted to determine the proliferation rate of HO-8910 cells. Cisplatin resistance of HO-8910 cells transfected with p LNCX2-NDRG2 L/S was evaluated by FCM. Tumors were generated in female nude mice by subcutaneous injection of HO-8910 cells.Results NDRG2 gene was isolated and its expression vector was successfully constructed. NDRG2 expression positively correlated with the proliferation of HO-8910 cells. NDRG2 L/S promoted tumorigenicity in HO-8910 cells.Conclusion The present study identified a novel function of NDRG2 L/S gene and demonstrated its involvement in the promotion of ovarian cancer cell proliferation and enhancement of cisplatin resistance in HO-8910 cells. Future studies are warranted to determine the relationship between NDRG2 upregulation and ovarian cancer progression.
基金supported by a grant from the Natural Sciences Foundation of Hubei Province(No.4-306)
文摘The expression of N-myc down-regulated gene 1 (NDRG1) has previously been reported to be involved in the proliferation,differentiation,invasion and metastasis of cancer cells,but its role in cervical cancer is still unclear.This study aimed to investigate the expression of NDRG1gene in human cervical cancer and its effect on aggressive tumor behaviors.The NDRG1 expression in cervical tissues and cells was detected by RT-PCR.Specific expression plasmid pEGFP-N1-NDRG1-GFP was used to enhance the expression of NDRG1 in human cervical cancer cell lines.The mRNA and protein level of NDRG1 was assessed by RT-PCR and Western blotting,respectively.Its effects on cell proliferation,migration,invasion,cell cycle and apoptosis were detected by MTT,transwell migration assay and flow cytometry (FCM),respectively.The results showed that the expression of NDRG1 in cervical cancer tissues and cells was significantly lower than in normal cervical tissues (P【0.001).After transfection with pEGFP-N1-NDRG1-GFP,the mRNA and protein expression of NDRG1 was up-regulated in Siha cells,which suppressed cell proliferation (P【0.001),induced cell cycle arrest (P【0.05),reduced invasion and migration of Siha cells (P【0.05),but caused no cell apoptosis.Moreover,vascular endothelial growth factor (VEGF),a tumor-induced angiogenesis factor,was markedly reduced and E-cadherin,a cell adhesion molecule,was increased in the cells transfected with pEGFP-N1-NDRG1-GFP.It was concluded that up-regulated NDRG1 may play a role in the suppression of malignant cell growth,invasion and metastasis of human cervical cancer.
基金the National Natural Science Foundation of China,No.81260361Incubation Project of Mianyang Central Hospital,No.2020FH05.
文摘BACKGROUND Invasion and migration are the irreversible stages of colorectal cancer(CRC).The key is to find a sensitive,reliable molecular marker that can predict the migration of CRC at an early stage.N-myc downstream regulated gene 1(NDRG1)is a multifunctional gene that has been tentatively reported to have a strong relationship with tumor invasion and migration,however the current molecular role of NDRG1 in CRC remains unknown.AIM To explore the role of NDRG1 in the development of CRC.METHODS NDRG1 stably over-expressed Caco2 cell line was established by lentiviral infection and NDRG1 knock-out Caco2 cell line was established by CRISPR/Cas9.Furthermore,the mRNA and protein levels of NDRG1 in Caco2 cells after NDRG1 over-expression and knockout were detected by real-time polymerase chain reaction and western blot.The cell proliferation rate was measured by the cell counting kit-8 method;cell cycle and apoptosis were detected by flow cytometry;invasion and migration ability were detected by the 24-transwell method.RESULTS NDRG1 over-expression inhibited Caco2 proliferation and the cell cycle could be arrested at the G1/S phase when NDRG1 was over-expressed,while the number of cells in the G2 phase was significantly increased when NDRG1 was knocked out.This suggests that NDRG1 inhibited the proliferation of Caco2 cells by arresting the cell cycle in the G1/S phase.Our data also demonstrated that NDRG1 promotes early cell apoptosis.Invasion and migration of cells were extensively inhibited when NDRG1 was over-expressed.CONCLUSION NDRG1 inhibits tumor progression in Caco2 cells which may represent a potential novel therapeutic strategy for the treatment of CRC.
基金Supported by Deutsche Forschungsgemeinschaft DFG,VO 871/2-3,to Vordermark Dthe IZKF Würzburg,B25,to Hagemann C
文摘AIM: To study short ds RNA oligonucleotides(si RNA)as a potent tool for artificially modulating gene expression of N-Myc down regulated gene 1(NDRG1) gene induced under different physiological conditions(Normoxia and hypoxia) modulating NDRG1 transcription, m RNA stability and translation. METHODS: A cell line established from a patient with glioblastoma multiforme. Plasmid DNA for transfections was prepared with the Endofree Plasmid Maxi kit. From plates containing 5 × 107 cells, nuclear extracts were prepared according to previous protocols. The p SUPERNDRG1 vectors were designed, two sequences were selected from the human NDRG1 c DNA(5'-GCATTATTGGCATGGGAAC-3' and 5'-ATGCAGAGTAACGTGGAAG-3'. reverse transcription polymerase chain reaction was performed using primers designed using published information on β-actin and hypoxia-inducible factor(HIF)-1α m RNA sequences in Gen Bank. NDRG1 m RNA and protein level expression results under different conditions of hypoxia or reoxygenation were compared to aerobic control conditions using the Mann-Whitney U test. Reoxygenation values were also compared to the NDRG1 levels after 24 h of hypoxia(P < 0.05 was considered significant).RESULTS: si RNA- and iodoacetate(IAA)-mediated downregulation of NDRG1 m RNA and protein expression in vitro in human glioblastoma cell lines showed a nearly complete inhibition of NDRG1 expression when compared to the results obtained due to the inhibitory role of glycolysis inhibitor IAA. Hypoxia responsive elements bound by nuclear HIF-1 in human glioblastoma cells in vitro under different oxygenation conditions and the clearly enhanced binding of nuclear extracts from glioblastoma cell samples exposed to extreme hypoxic conditions confirmed the HIF-1 Western blotting results. CONCLUSION: NDRG1 represents an additional diagnostic marker for brain tumor detection, due to the role of hypoxia in regulating this gene, and it canrepresent a potential target for tumor treatment in human glioblastoma. The si RNA method can represent an elegant alternative to modulate the expression of the hypoxia induced NDRG1 gene and can help to monitor the development of the cancer disease treatment outcome through monitoring the expression of this gene in the patients undergoing the different therapeutic treatment alternatives available nowadays.
基金Supported by the Fund for Key Technologies R and D Pro-gramme of Hubei Province(2006AA301A03 )
文摘Plasmid expressing small interfering RNA (siRNA) against HIF-1α (pSilence-2.1-U6-siRNA) was constructed and transfected into LS174T cells in hypoxia condition.After expression of siRNA against HIF-1 α in LS174T cells, expressions of HIF-1 α and N-myc downstream regulated gene 1 (NDRG1) gene were inhibited significantly. HIF-1 cta transcripts were positive in 67.7% (42/62) and 44.4% (8/18) of colorectal adenocarcinoma and adenoma, re- spectively. The mean percentage of cells with positive hybridization of HIF-1 α mRNA increases with the development from Duke stage A to stage C+D (p〈 0.05). The positive staining rate of NDRG1 protein was significant higher in than that in colorectal adenoma colorectal adenocarcinoma group group (p〈 0.05). The level of HIF-1 a transcripts was positively correlated with the level of NDRG1 protein (p 〈 0.05) during colorectal tumor progression. HIF-1α and its down stream gene NDRG1 may play roles in tumor progression of human colorectal carcinoma.
文摘核受体在细胞稳态的维持以及疾病的发生发展等方面发挥着重要的作用。为了探究核受体亚家族6A组成员1(nuclear receptor subfamily 6 group A member 1,NR6A1)在肝癌中的作用及机制,首先,分析了癌症基因组图谱(The Cancer Genome Atlas,TCGA)等数据库信息,发现NR6A1在肝癌中异常高表达且与患者预后不良有关;然后,通过CCK-8(Cell Counting Kit-8)、5-乙炔基-2′-脱氧尿苷(5-ethynyl-2′-deoxyuridine,EdU)、划痕实验发现,干扰NR6A1使肝癌细胞的增殖明显受到抑制但不影响细胞的迁移;其次,通过免疫共沉淀、免疫荧光、RNA干扰和过表达等实验,鉴定出N-myc下游调控基因1(N-myc downstream-regulated gene 1,NDRG1)是NR6A1在肝癌中的互作蛋白质,二者在肝癌中的表达呈正相关,且NR6A1正调控NDRG1的表达;最后,利用功能拯救实验证实,干扰NDRG1可以抑制NR6A1过表达造成的肝癌细胞增殖增强的现象。综上可知,NR6A1通过与NDRG1相互结合且上调NDRG1的表达来发挥促癌作用。
文摘The protein,N-myc downstream-regulated gene 2(NDRG2),a tumor suppressor,is significantly decreased or absent in many types of cancer.There is a significant negative correlation between the levels of NDRG2 and the development and progression of cancer tumor recurrence and tumor invasion,in different cancers.In contrast,the in vitro and in vivo overexpression of the NDRG2 protein decreases the proliferation,growth,adhesion and migration of many types of cancer cells.The in vitro overexpression of NDRG2 increases the efficacy of certain anticancer drugs in specific types of cancer cells.We hypothesize that the delivery of the mRNA of the NDRG2 protein,encapsulated by lipid nanoparticles,could represent a potential treatment of metastatic and drug-resistant cancers.This would be accomplished using a self-amplifying mRNA that encodes the NDRG2 protein and an RNA-dependent-RNA polymerase,obtained from an in vitrotranscribed(IVT)mRNA.The IVT mRNA would be encapsulated in a lipid nanoformulation.The efficacy of the nanoformulation would be determined in cultured cancer cells and if the results are positive,nude mice transplanted with either drug-resistant or metastatic drug-resistant cancer cells,would be treated with the nanoformulation and monitored for efficacy and adverse effects.If the appropriate preclinical studies indicate this formulation is efficacious and safe,it is possible it could be evaluated in clinical trials.
文摘Background: Lipoxin A4 (LXA4) can alleviate lipopolysaccharide (LPS)-induced acute lung injury (ALl) and acute respiratory distress syndrome through promoting epithelial sodium channel (ENaC) expression in lung epithelial cells. However, how LXA4 promote ENaC expression is still largely elusive. The present study aimed to explore genes and signaling pathway involved in regulating ENaC expression induced by LXA4. Methods: A549 cells were incubated with LPS and LXA4, or in combination, and analyzed by quantitative real-time polymerase chain reaction (qRT-PCR) of ENaC-α/γ. Candidate genes affected by LXA4 were explored by transcriptome sequencing ofA549 cells. The critical candidate gene was validated by qRT-PCR and Western blot analysis ofA549 cells treated with LPS and LXA4 at different concentrations and time intervals. LXA4 receptor (ALX) inhibitor BOC-2 was used to test induction of candidate gene by LXA4. Candidate gene siRNA was adopted to analyze its influence on A549 viability and ENaC-α expression. Phosphoinositide 3-kinase (PI3K) inhibitor LY294002 was utilized to probe whether the PI3K signaling pathway was involved in LXA4 induction of candidate gene expression. Results: The A549 cell models of ALl were constrticted and subjected to transcriptome sequencing. Among candidate genes, N-myc downstream- regulated gent- 1 (NDRG 1 ) was validated by real-time-PCR and Western blot. NDRG 1 mRNA was elevated in a dose-dependent manner of LXA4, whereas BOC-2 antagonized NDRG 1 expression induced by LXA4. NDRG I siRNA suppressed viability of LPS-treated A549 cells (treatment vs. control, 0.605± 0.063 vs. 0.878 ± 0.083, P = 0.040) and ENaC-α expression (treatment vs. control, 0.458 ± 0.038 vs. 0.711 ± 0.035, P = 0.008). LY294002 inhibited NDRG 1 (treatment vs. control, 0.459 ± 0.023 vs. 0.726 ± 0.020, P 0.001 ) and ENaC-α (treatment vs. control, 0.236 ± 0.021 vs. 0.814 ±0.025, P 〈 0.001 ) expressions and serum- and glucocorticoid-inducible kinase I phosphorylation (treatment vs. control, 0.442± 0.024 vs. 1.046 ± 0.082, P = 0.002), indicating the PI3K signaling pathway was involved in regulating NDRG 1 expression induced by LXA4. Conclusion: Our research uncovered a critical role of NDRG1 in LXA4 alleviation of LPS-induced A549 cell injury through mediating PI3K signaling to restore ENaC expression.