In this paper, the stability and bifurcation behaviors of a predator-prey model with the piecewise constant arguments and time delay are investigated. Technical approach is fully based on Jury criterion and bifurcatio...In this paper, the stability and bifurcation behaviors of a predator-prey model with the piecewise constant arguments and time delay are investigated. Technical approach is fully based on Jury criterion and bifurcation theory. The interesting point is that the model will produce two different branches by limiting branch parameters of different intervals. Besides, image simulation is also given.展开更多
This paper investigates logical stochastic resonance(LSR)in a cross-bifurcation non-smooth system driven by Gaussian colored noise.In this system,a bifurcation parameter triggers a transition between monostability,bis...This paper investigates logical stochastic resonance(LSR)in a cross-bifurcation non-smooth system driven by Gaussian colored noise.In this system,a bifurcation parameter triggers a transition between monostability,bistability and tristability.By using Novikov's theorem and the unified colored noise approximation method,the approximate Fokker-Planck equation is obtained.Then we derive the generalized potential function and the transition rates to analyze the LSR phenomenon using numerical simulations.We simulate the logic operation of the system in the bistable and tristable regions respectively.We assess the impact of Gaussian colored noise on the LSR and discover that the reliability of the logic response depends on the noise strength and the bifurcation parameter.Furthermore,it is found that the bistable region has a more extensive parameter range to produce reliable logic operation compared with the tristable region,since the tristable region is more sensitive to noise than the bistable one.展开更多
For the (2 + 1)-dimensional nonlinear dispersive Boussinesq equation, by using the bifurcation theory of planar dynamical systems to study its corresponding traveling wave system, the bifurcations and phase portraits ...For the (2 + 1)-dimensional nonlinear dispersive Boussinesq equation, by using the bifurcation theory of planar dynamical systems to study its corresponding traveling wave system, the bifurcations and phase portraits of the regular system are obtained. Under different parametric conditions, various sufficient conditions to guarantee the existence of analytical and non-analytical solutions of the singular system are given by using singular traveling wave theory. For certain special cases, some explicit and exact parametric representations of traveling wave solutions are derived such as analytical periodic waves and non-analytical periodic cusp waves. Further, two-dimensional wave plots of analytical periodic solutions and non-analytical periodic cusp wave solutions are drawn to visualize the dynamics of the equation.展开更多
Oil film forces are usually obtained for dynamic analysis of a journal bearing system by using the approximate analytical formula or solving the Reynolds equation. None of them is suitable for rotor system bifurcation...Oil film forces are usually obtained for dynamic analysis of a journal bearing system by using the approximate analytical formula or solving the Reynolds equation. None of them is suitable for rotor system bifurcation analysis because they are either of poor accuracy or time consuming. Oil film forces database is proposed is to transform the journal speed variation range in radial and circumferential directions from (-∞,+∞) to (-1, +1). The numerical results show the suggested method is much more effective. And sub harmonic, quasi periodic and chaotic vibrations are predicted for a range of speed and unbalance parameters.展开更多
Based on the chaotic geomagnetic field model, a non-smooth factor is introduced to explore complex dynamical behaviors of a system with multiple time scales. By regarding the whole excitation term as a parameter, bifu...Based on the chaotic geomagnetic field model, a non-smooth factor is introduced to explore complex dynamical behaviors of a system with multiple time scales. By regarding the whole excitation term as a parameter, bifurcation sets are derived, which divide the generalized parameter space into several regions corresponding to different kinds of dynamic behaviors. Due to the existence of non-smooth factors, different types of bifurcations are presented in spiking states, such as grazing-sliding bifurcation and across-sliding bifurcation. In addition, the non-smooth fold bifurcation may lead to the appearance of a special quiescent state in the interface as well as a non-smooth homoclinic bifurcation phenomenon. Due to these bifurcation behaviors, a special transition between spiking and quiescent state can also occur.展开更多
Grazing bifurcation of a relative rotation system with backlash non-smooth characteristic is studied along with the change of the external excitation in this paper. Considering the oil film, backlash, time-varying sti...Grazing bifurcation of a relative rotation system with backlash non-smooth characteristic is studied along with the change of the external excitation in this paper. Considering the oil film, backlash, time-varying stiffness and time-varying error, the dynamical equation of a relative rotation system with a backlash non-smooth characteristic is deduced by applying the elastic hydrodynamic lubrication(EHL) and the Grubin theories. In the process of relative rotation, the occurrence of backlash will lead to the change of dynamic behaviors of the system, and the system will transform from the meshing state to the impact state. Thus, the zero-time discontinuous mapping(ZDM) and the Poincare mapping are deduced to analyze the local dynamic characteristics of the system before as well as after the moment that the backlash appears(i.e.,the grazing state). Meanwhile, the grazing bifurcation mechanism is analyzed theoretically by applying the impact and Floquet theories. Numerical simulations are also given, which confirm the analytical results.展开更多
A direct-current-direct-current (DC-DC) buck converter with integrated load current feedback is studied with three kinds of Poincaré maps. The external corner-collision bifurcation occurs when the crossing numb...A direct-current-direct-current (DC-DC) buck converter with integrated load current feedback is studied with three kinds of Poincaré maps. The external corner-collision bifurcation occurs when the crossing number per period varies, and the internal corner-collision bifurcations occur along with period-doubling and period-tripling bifurcations in this model. The multi-band chaos roots in external corner-collision bifurcation and often grows into 1-band chaos. A new kind of chaotic sliding orbits, which is more complex for non-smooth systems, is also found in this model.展开更多
Piece-wise smooth systems are an important class of ordinary differential equations whosedynamics are known to exhibit complex bifurcation scenarios and chaos. Broadly speaking,piece-wise smooth systems can undergo al...Piece-wise smooth systems are an important class of ordinary differential equations whosedynamics are known to exhibit complex bifurcation scenarios and chaos. Broadly speaking,piece-wise smooth systems can undergo all the bifurcation that smooth ones can. Moreinterestingly, there is a whole class of bifurcation that are unique to piece-wise smoothsystems, such as the bifurcation caused by the geometric shape of the region in which the展开更多
The fast-slow effect can be observed in a typical non-smooth electric circuit with order gap between the natural frequency and the excitation frequency. Numerical simulations are employed to show complicated behaviour...The fast-slow effect can be observed in a typical non-smooth electric circuit with order gap between the natural frequency and the excitation frequency. Numerical simulations are employed to show complicated behaviours, especially different types of busting phenomena. The bifurcation mechanism for the bursting solutions is analysed by assuming the forms of the solutions and introducing the generalized Jacobian matrix at the non-smooth boundaries, which can also be used to account for the evolution of the complicated structures of the phase portraits with the variation of the parameter. Period-adding bifurcation has been explored through the computation of the eigenvalues related to the solutions. At the non-smooth boundaries the so-called 'single crossing bifurcation' can occur, corresponding to the case where the eigenvalues jump only once across the imaginary axis, which leads the periodic burster to have a quasi-periodic oscillation.展开更多
The new independent solutions of the nonlinear differential equation with time-dependent coefficients (NDE-TC) are discussed, for the first time, by employing experimental device called a drinking bird whose simple ba...The new independent solutions of the nonlinear differential equation with time-dependent coefficients (NDE-TC) are discussed, for the first time, by employing experimental device called a drinking bird whose simple back-and-forth motion develops into water drinking motion. The solution to a drinking bird equation of motion manifests itself the transition from thermodynamic equilibrium to nonequilibrium irreversible states. The independent solution signifying a nonequilibrium thermal state seems to be constructed as if two independent bifurcation solutions are synthesized, and so, the solution is tentatively termed as the bifurcation-integration solution. The bifurcation-integration solution expresses the transition from mechanical and thermodynamic equilibrium to a nonequilibrium irreversible state, which is explicitly shown by the nonlinear differential equation with time-dependent coefficients (NDE-TC). The analysis established a new theoretical approach to nonequilibrium irreversible states, thermomechanical dynamics (TMD). The TMD method enables one to obtain thermodynamically consistent and time-dependent progresses of thermodynamic quantities, by employing the bifurcation-integration solutions of NDE-TC. We hope that the basic properties of bifurcation-integration solutions will be studied and investigated further in mathematics, physics, chemistry and nonlinear sciences in general.展开更多
This article describes the implementation of a novel method for detection and continuation of bifurcations in non-smooth complex dynamic systems. The method is an alternative to existing ones for the follow-up of asso...This article describes the implementation of a novel method for detection and continuation of bifurcations in non-smooth complex dynamic systems. The method is an alternative to existing ones for the follow-up of associated phenomena, precisely in the circumstances in which the traditional ones have limitations (simultaneous impact, Filippov and first derivative discontinuities and multiple discontinuous boundaries). The topology of cycles in non-smooth systems is determined by a group of ordered segments and points of different regions and their boundaries. In this article, we compare the limit cycles of non-smooth systems against the sequences of elements, in order to find patterns. To achieve this goal, a method was used, which characterizes and records the elements comprising the cycles in the order that they appear during the integration process. The characterization discriminates: a) types of points and segments;b) direction of sliding segments;and c) regions or discontinuity boundaries to which each element belongs. When a change takes place in the value of a parameter of a system, our comparison method is an alternative to determine topological changes and hence bifurcations and associated phenomena. This comparison has been tested in systems with discontinuities of three types: 1) impact;2) Filippov and 3) first derivative discontinuities. By coding well-known cycles as sequences of elements, an initial comparison database was built. Our comparison method offers a convenient approach for large systems with more than two regions and more than two sliding segments.展开更多
A mathematical model of man-machine system is considered.Based on the reference [4],the direction and stability of the Hopf bifurcation are determined using the normal form method and the center manifold theory.Furthe...A mathematical model of man-machine system is considered.Based on the reference [4],the direction and stability of the Hopf bifurcation are determined using the normal form method and the center manifold theory.Furthermore,the existence of Hopf-zero bifurcation is discussed.In the end,some numerical simulations are carried out to illustrate the results found.展开更多
The Hopfbifurcation for the Brusselator ordinary-differential-equation (ODE) model and the corresponding partial-differential-equation (PDE) model are investigated by using the Hopf bifurcation theorem. The stabil...The Hopfbifurcation for the Brusselator ordinary-differential-equation (ODE) model and the corresponding partial-differential-equation (PDE) model are investigated by using the Hopf bifurcation theorem. The stability of the Hopf bifurcation periodic solution is discussed by applying the normal form theory and the center manifold theorem. When parameters satisfy some conditions, the spatial homogenous equilibrium solution and the spatial homogenous periodic solution become unstable. Our results show that if parameters are properly chosen, Hopf bifurcation does not occur for the ODE system, but occurs for the PDE system.展开更多
Both clinical and post mortem studies indicate that, in humans, the carotid sinus of the carotid artery bifurcation is one of the favored sites for the genesis and development of atherosclerotic lesions. Hemodynamic f...Both clinical and post mortem studies indicate that, in humans, the carotid sinus of the carotid artery bifurcation is one of the favored sites for the genesis and development of atherosclerotic lesions. Hemodynamic factors have been suggested to be important in atherogenesis. To understand the correlation between atherogenesis and fluid dynamics in the carotid sinus, the blood flow in artery was simulated numerically. In those studies, the property of blood was treated as an incompressible, Newtonian fluid. In fact, however, the blood is a complicated non-Newtonian fluid with shear thinning and viscoelastic properties, especially when the shear rate is low. A variety of non-Newtonian models have been applied in the numerical studies. Among them, the Casson equation was widely used. However, the Casson equation agrees well only when the shear rate is less than 10 s-1. The flow field of the carotid bifurcation usually covers a wide range of shear rate. We therefore believe that it may not be sufficient to describe the property of blood only using the Casson equation in the whole flow field of the carotid bifurcation. In the present study, three different blood constitutive models, namely, the Newtonian, the Casson and the hybrid fluid constitutive models were used in the flow simulation of the human carotid bifurcation. The results were compared among the three models. The results showed that the Newtonian model and the hybrid model had verysimilar distributions of the axial velocity, secondary flow and wall shear stress, but the Casson model resulted in significant differences in these distributions from the other two models. This study suggests that it is not appropriate to only use the Casson equation to simulate the whole flow field of the carotid bifurcation, and on the other hand, Newtonian fluid is a good approximation to blood for flow simulations in the carotid artery bifurcation.展开更多
In recent years, the traffic congestion problem has become more and more serious, and the research on traffic system control has become a new hot spot. Studying the bifurcation characteristics of traffic flow systems ...In recent years, the traffic congestion problem has become more and more serious, and the research on traffic system control has become a new hot spot. Studying the bifurcation characteristics of traffic flow systems and designing control schemes for unstable pivots can alleviate the traffic congestion problem from a new perspective. In this work, the full-speed differential model considering the vehicle network environment is improved in order to adjust the traffic flow from the perspective of bifurcation control, the existence conditions of Hopf bifurcation and saddle-node bifurcation in the model are proved theoretically, and the stability mutation point for the stability of the transportation system is found. For the unstable bifurcation point, a nonlinear system feedback controller is designed by using Chebyshev polynomial approximation and stochastic feedback control method. The advancement, postponement, and elimination of Hopf bifurcation are achieved without changing the system equilibrium point, and the mutation behavior of the transportation system is controlled so as to alleviate the traffic congestion. The changes in the stability of complex traffic systems are explained through the bifurcation analysis, which can better capture the characteristics of the traffic flow. By adjusting the control parameters in the feedback controllers, the influence of the boundary conditions on the stability of the traffic system is adequately described, and the effects of the unstable focuses and saddle points on the system are suppressed to slow down the traffic flow. In addition, the unstable bifurcation points can be eliminated and the Hopf bifurcation can be controlled to advance, delay, and disappear,so as to realize the control of the stability behavior of the traffic system, which can help to alleviate the traffic congestion and describe the actual traffic phenomena as well.展开更多
Background: Bifurcation lesions pose a high risk for adverse events after percutaneous coronary intervention (PCI). Evidence supporting the benefits of the two-stent strategy (2SS) for treating coronary bifurcation le...Background: Bifurcation lesions pose a high risk for adverse events after percutaneous coronary intervention (PCI). Evidence supporting the benefits of the two-stent strategy (2SS) for treating coronary bifurcation lesions in India is limited. This study aimed to evaluate the clinical outcomes of various 2SSs for percutaneous transluminal coronary angioplasty for bifurcation lesions in India. Materials and Methods: This retrospective, observational, multicentric, real-world study included 64 patients over 8 years. Data on demographics, medical history, PCI procedures, and outcomes were recorded. Descriptive statistics were computed using the SPSS software. Results: Patients (n = 64) had an average age of 65.3 ± 11.1 years, with 78.1% males. Acute coronary syndrome was reported in 18.8%, chronic stable angina in 40.6%, and unstable angina in 34.4% of participants. Two-vessel disease was observed in 98.4% of patients, and 99.4% had true bifurcation lesions. The commonly involved vessels were the left anterior descending artery (50%), left circumflex coronary artery (34.4%), and first diagonal artery (43.8%). Mean percent diameter stenosis was 87.2% ± 10.1%. The mean number of stents used was 2.00 ± 0.34. The 2SS techniques included the T and small protrusion (TAP) (39.1%), double kissing (DK) crush (18.8%), and the culotte techniques (14.1%). Procedural and angiographic success rate was 92.18%. Major adverse cardiovascular events at 1-year follow-up occurred in 7.8% of cases. Conclusion: The 2SS for bifurcation lesions showed favorable in-hospital and follow-up outcomes. Findings can serve as a resource for bifurcation angioplasty in India. Larger real-world studies with robust methodology are needed to validate these results.展开更多
In this paper, we design a feedback controller, and analytically determine a control criterion so as to control the codimension-2 Bautin bifurcation in the chaotic Lfi system. According to the control criterion, we de...In this paper, we design a feedback controller, and analytically determine a control criterion so as to control the codimension-2 Bautin bifurcation in the chaotic Lfi system. According to the control criterion, we determine a potential Bautin bifurcation region (denoted by P) of the controlled system. This region contains the Bautin bifurcation region (denoted by Q) of the uncontrolled system as its proper subregion. The controlled system can exhibit Bautin bifurcation in P or its proper subregion provided the control gains are properly chosen. Particularly, we can control the appearance of Bautin bifurcation at any appointed point in the region P. Due to the relationship between Bantin bifurcation and Hopf bifurcation, the control scheme thereby is also viable for controlling the creation and stability of the Hopf bifurcation. In the controller, there are two terms: a linear term and a nonlinear cubic term. We show that the former determines the location of the Hopf bifurcation while the latter regulates its criticality. We also carry out numerical studies, and the simulation results confirm our analyticai predictions.展开更多
This paper is concerned with the Hopf bifurcation control of a modified Pan-like chaotic system. Based on the Routh-Hurwtiz theory and high-dimensional Hopf bifurcation theory, the existence and stability of the Hopf ...This paper is concerned with the Hopf bifurcation control of a modified Pan-like chaotic system. Based on the Routh-Hurwtiz theory and high-dimensional Hopf bifurcation theory, the existence and stability of the Hopf bifurcation depending on selected values of the system parameters are studied. The region of the stability for the Hopf bifurcation is investigated.By the hybrid control method, a nonlinear controller is designed for changing the Hopf bifurcation point and expanding the range of the stability. Discussions show that with the change of parameters of the controller, the Hopf bifurcation emerges at an expected location with predicted properties and the range of the Hopf bifurcation stability is expanded. Finally,numerical simulation is provided to confirm the analytic results.展开更多
This paper presents a mathematical model consisting of conservation and balance laws (CBL) of classical continuum mechanics (CCM) and ordered rate constitutive theories in Lagrangian description derived using entropy ...This paper presents a mathematical model consisting of conservation and balance laws (CBL) of classical continuum mechanics (CCM) and ordered rate constitutive theories in Lagrangian description derived using entropy inequality and the representation theorem for thermoviscoelastic solids (TVES) with rheology. The CBL and the constitutive theories take into account finite deformation and finite strain deformation physics and are based on contravariant deviatoric second Piola-Kirchhoff stress tensor and its work conjugate covariant Green’s strain tensor and their material derivatives of up to order m and n respectively. All published works on nonlinear dynamics of TVES with rheology are mostly based on phenomenological mathematical models. In rare instances, some aspects of CBL are used but are incorrectly altered to obtain mass, stiffness and damping matrices using space-time decoupled approaches. In the work presented in this paper, we show that this is not possible using CBL of CCM for TVES with rheology. Thus, the mathematical models used currently in the published works are not the correct description of the physics of nonlinear dynamics of TVES with rheology. The mathematical model used in the present work is strictly based on the CBL of CCM and is thermodynamically and mathematically consistent and the space-time coupled finite element methodology used in this work is unconditionally stable and provides solutions with desired accuracy and is ideally suited for nonlinear dynamics of TVES with memory. The work in this paper is the first presentation of a mathematical model strictly based on CBL of CCM and the solution of the mathematical model is obtained using unconditionally stable space-time coupled computational methodology that provides control over the errors in the evolution. Both space-time coupled and space-time decoupled finite element formulations are considered for obtaining solutions of the IVPs described by the mathematical model and are presented in the paper. Factors or the physics influencing dynamic response and dynamic bifurcation for TVES with rheology are identified and are also demonstrated through model problem studies. A simple model problem consisting of a rod (1D) of TVES material with memory fixed at one end and subjected to harmonic excitation at the other end is considered to study nonlinear dynamics of TVES with rheology, frequency response as well as dynamic bifurcation phenomenon.展开更多
基金supported by Beijing Higher Education Young Elite Teacher(YETP0458)
文摘In this paper, the stability and bifurcation behaviors of a predator-prey model with the piecewise constant arguments and time delay are investigated. Technical approach is fully based on Jury criterion and bifurcation theory. The interesting point is that the model will produce two different branches by limiting branch parameters of different intervals. Besides, image simulation is also given.
基金Project supported by the National Natural Science Foundation of China(Grant No.12072262)the Shaanxi Computer Society&Xiangteng Company Foundation.
文摘This paper investigates logical stochastic resonance(LSR)in a cross-bifurcation non-smooth system driven by Gaussian colored noise.In this system,a bifurcation parameter triggers a transition between monostability,bistability and tristability.By using Novikov's theorem and the unified colored noise approximation method,the approximate Fokker-Planck equation is obtained.Then we derive the generalized potential function and the transition rates to analyze the LSR phenomenon using numerical simulations.We simulate the logic operation of the system in the bistable and tristable regions respectively.We assess the impact of Gaussian colored noise on the LSR and discover that the reliability of the logic response depends on the noise strength and the bifurcation parameter.Furthermore,it is found that the bistable region has a more extensive parameter range to produce reliable logic operation compared with the tristable region,since the tristable region is more sensitive to noise than the bistable one.
文摘For the (2 + 1)-dimensional nonlinear dispersive Boussinesq equation, by using the bifurcation theory of planar dynamical systems to study its corresponding traveling wave system, the bifurcations and phase portraits of the regular system are obtained. Under different parametric conditions, various sufficient conditions to guarantee the existence of analytical and non-analytical solutions of the singular system are given by using singular traveling wave theory. For certain special cases, some explicit and exact parametric representations of traveling wave solutions are derived such as analytical periodic waves and non-analytical periodic cusp waves. Further, two-dimensional wave plots of analytical periodic solutions and non-analytical periodic cusp wave solutions are drawn to visualize the dynamics of the equation.
基金SponsoredbytheNationalNaturalScienceofFoundationofChina (No .19990 5 10 )andNaturalScienceFoundationofHeilongjiangprovince
文摘Oil film forces are usually obtained for dynamic analysis of a journal bearing system by using the approximate analytical formula or solving the Reynolds equation. None of them is suitable for rotor system bifurcation analysis because they are either of poor accuracy or time consuming. Oil film forces database is proposed is to transform the journal speed variation range in radial and circumferential directions from (-∞,+∞) to (-1, +1). The numerical results show the suggested method is much more effective. And sub harmonic, quasi periodic and chaotic vibrations are predicted for a range of speed and unbalance parameters.
基金Project supported by the National Natural Science Foundation of China(Grant No.11472116)the Key Program of the National Natural Science Foundation of China(Grant No.11632008)the Postgraduate Research&Practice Innovation Program of Jiangsu Province,China(Grant No.KYCX17 1784)
文摘Based on the chaotic geomagnetic field model, a non-smooth factor is introduced to explore complex dynamical behaviors of a system with multiple time scales. By regarding the whole excitation term as a parameter, bifurcation sets are derived, which divide the generalized parameter space into several regions corresponding to different kinds of dynamic behaviors. Due to the existence of non-smooth factors, different types of bifurcations are presented in spiking states, such as grazing-sliding bifurcation and across-sliding bifurcation. In addition, the non-smooth fold bifurcation may lead to the appearance of a special quiescent state in the interface as well as a non-smooth homoclinic bifurcation phenomenon. Due to these bifurcation behaviors, a special transition between spiking and quiescent state can also occur.
基金Project supported by the National Natural Science Foundation of China(Grant No.61104040)the Natural Science Foundation of Hebei Province,China(Grant No.E2012203090)the University Innovation Team of Hebei Province Leading Talent Cultivation Project,China(Grant No.LJRC013)
文摘Grazing bifurcation of a relative rotation system with backlash non-smooth characteristic is studied along with the change of the external excitation in this paper. Considering the oil film, backlash, time-varying stiffness and time-varying error, the dynamical equation of a relative rotation system with a backlash non-smooth characteristic is deduced by applying the elastic hydrodynamic lubrication(EHL) and the Grubin theories. In the process of relative rotation, the occurrence of backlash will lead to the change of dynamic behaviors of the system, and the system will transform from the meshing state to the impact state. Thus, the zero-time discontinuous mapping(ZDM) and the Poincare mapping are deduced to analyze the local dynamic characteristics of the system before as well as after the moment that the backlash appears(i.e.,the grazing state). Meanwhile, the grazing bifurcation mechanism is analyzed theoretically by applying the impact and Floquet theories. Numerical simulations are also given, which confirm the analytical results.
基金Supported by the National Natural Science Foundation of China under Grant No 10572011.
文摘A direct-current-direct-current (DC-DC) buck converter with integrated load current feedback is studied with three kinds of Poincaré maps. The external corner-collision bifurcation occurs when the crossing number per period varies, and the internal corner-collision bifurcations occur along with period-doubling and period-tripling bifurcations in this model. The multi-band chaos roots in external corner-collision bifurcation and often grows into 1-band chaos. A new kind of chaotic sliding orbits, which is more complex for non-smooth systems, is also found in this model.
基金The NSFC (10071030) of China.The Volkswagen Foundation of Germany The Project-sponsored by SRP for ROCS,SEM(2002).
文摘Piece-wise smooth systems are an important class of ordinary differential equations whosedynamics are known to exhibit complex bifurcation scenarios and chaos. Broadly speaking,piece-wise smooth systems can undergo all the bifurcation that smooth ones can. Moreinterestingly, there is a whole class of bifurcation that are unique to piece-wise smoothsystems, such as the bifurcation caused by the geometric shape of the region in which the
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10972091 and 10872080)
文摘The fast-slow effect can be observed in a typical non-smooth electric circuit with order gap between the natural frequency and the excitation frequency. Numerical simulations are employed to show complicated behaviours, especially different types of busting phenomena. The bifurcation mechanism for the bursting solutions is analysed by assuming the forms of the solutions and introducing the generalized Jacobian matrix at the non-smooth boundaries, which can also be used to account for the evolution of the complicated structures of the phase portraits with the variation of the parameter. Period-adding bifurcation has been explored through the computation of the eigenvalues related to the solutions. At the non-smooth boundaries the so-called 'single crossing bifurcation' can occur, corresponding to the case where the eigenvalues jump only once across the imaginary axis, which leads the periodic burster to have a quasi-periodic oscillation.
文摘The new independent solutions of the nonlinear differential equation with time-dependent coefficients (NDE-TC) are discussed, for the first time, by employing experimental device called a drinking bird whose simple back-and-forth motion develops into water drinking motion. The solution to a drinking bird equation of motion manifests itself the transition from thermodynamic equilibrium to nonequilibrium irreversible states. The independent solution signifying a nonequilibrium thermal state seems to be constructed as if two independent bifurcation solutions are synthesized, and so, the solution is tentatively termed as the bifurcation-integration solution. The bifurcation-integration solution expresses the transition from mechanical and thermodynamic equilibrium to a nonequilibrium irreversible state, which is explicitly shown by the nonlinear differential equation with time-dependent coefficients (NDE-TC). The analysis established a new theoretical approach to nonequilibrium irreversible states, thermomechanical dynamics (TMD). The TMD method enables one to obtain thermodynamically consistent and time-dependent progresses of thermodynamic quantities, by employing the bifurcation-integration solutions of NDE-TC. We hope that the basic properties of bifurcation-integration solutions will be studied and investigated further in mathematics, physics, chemistry and nonlinear sciences in general.
文摘This article describes the implementation of a novel method for detection and continuation of bifurcations in non-smooth complex dynamic systems. The method is an alternative to existing ones for the follow-up of associated phenomena, precisely in the circumstances in which the traditional ones have limitations (simultaneous impact, Filippov and first derivative discontinuities and multiple discontinuous boundaries). The topology of cycles in non-smooth systems is determined by a group of ordered segments and points of different regions and their boundaries. In this article, we compare the limit cycles of non-smooth systems against the sequences of elements, in order to find patterns. To achieve this goal, a method was used, which characterizes and records the elements comprising the cycles in the order that they appear during the integration process. The characterization discriminates: a) types of points and segments;b) direction of sliding segments;and c) regions or discontinuity boundaries to which each element belongs. When a change takes place in the value of a parameter of a system, our comparison method is an alternative to determine topological changes and hence bifurcations and associated phenomena. This comparison has been tested in systems with discontinuities of three types: 1) impact;2) Filippov and 3) first derivative discontinuities. By coding well-known cycles as sequences of elements, an initial comparison database was built. Our comparison method offers a convenient approach for large systems with more than two regions and more than two sliding segments.
基金Foundation item: Supported bY the Natural Science Foundation of Ningxia(NZ09204) Supported by the Youth Foundation of Ningxia Teacher's Universlty(QN2010002)
文摘A mathematical model of man-machine system is considered.Based on the reference [4],the direction and stability of the Hopf bifurcation are determined using the normal form method and the center manifold theory.Furthermore,the existence of Hopf-zero bifurcation is discussed.In the end,some numerical simulations are carried out to illustrate the results found.
基金Project supported by the National Natural Science Foundation of China (No.10771032)the Natural Science Foundation of Jiangsu Province (BK2006088)
文摘The Hopfbifurcation for the Brusselator ordinary-differential-equation (ODE) model and the corresponding partial-differential-equation (PDE) model are investigated by using the Hopf bifurcation theorem. The stability of the Hopf bifurcation periodic solution is discussed by applying the normal form theory and the center manifold theorem. When parameters satisfy some conditions, the spatial homogenous equilibrium solution and the spatial homogenous periodic solution become unstable. Our results show that if parameters are properly chosen, Hopf bifurcation does not occur for the ODE system, but occurs for the PDE system.
基金supported by the National Natural Science Foundation of China (10527001, 10632010, 10672015)
文摘Both clinical and post mortem studies indicate that, in humans, the carotid sinus of the carotid artery bifurcation is one of the favored sites for the genesis and development of atherosclerotic lesions. Hemodynamic factors have been suggested to be important in atherogenesis. To understand the correlation between atherogenesis and fluid dynamics in the carotid sinus, the blood flow in artery was simulated numerically. In those studies, the property of blood was treated as an incompressible, Newtonian fluid. In fact, however, the blood is a complicated non-Newtonian fluid with shear thinning and viscoelastic properties, especially when the shear rate is low. A variety of non-Newtonian models have been applied in the numerical studies. Among them, the Casson equation was widely used. However, the Casson equation agrees well only when the shear rate is less than 10 s-1. The flow field of the carotid bifurcation usually covers a wide range of shear rate. We therefore believe that it may not be sufficient to describe the property of blood only using the Casson equation in the whole flow field of the carotid bifurcation. In the present study, three different blood constitutive models, namely, the Newtonian, the Casson and the hybrid fluid constitutive models were used in the flow simulation of the human carotid bifurcation. The results were compared among the three models. The results showed that the Newtonian model and the hybrid model had verysimilar distributions of the axial velocity, secondary flow and wall shear stress, but the Casson model resulted in significant differences in these distributions from the other two models. This study suggests that it is not appropriate to only use the Casson equation to simulate the whole flow field of the carotid bifurcation, and on the other hand, Newtonian fluid is a good approximation to blood for flow simulations in the carotid artery bifurcation.
基金Project supported by the National Natural Science Foundation of China(Grant No.72361031)the Gansu Province University Youth Doctoral Support Project(Grant No.2023QB-049)。
文摘In recent years, the traffic congestion problem has become more and more serious, and the research on traffic system control has become a new hot spot. Studying the bifurcation characteristics of traffic flow systems and designing control schemes for unstable pivots can alleviate the traffic congestion problem from a new perspective. In this work, the full-speed differential model considering the vehicle network environment is improved in order to adjust the traffic flow from the perspective of bifurcation control, the existence conditions of Hopf bifurcation and saddle-node bifurcation in the model are proved theoretically, and the stability mutation point for the stability of the transportation system is found. For the unstable bifurcation point, a nonlinear system feedback controller is designed by using Chebyshev polynomial approximation and stochastic feedback control method. The advancement, postponement, and elimination of Hopf bifurcation are achieved without changing the system equilibrium point, and the mutation behavior of the transportation system is controlled so as to alleviate the traffic congestion. The changes in the stability of complex traffic systems are explained through the bifurcation analysis, which can better capture the characteristics of the traffic flow. By adjusting the control parameters in the feedback controllers, the influence of the boundary conditions on the stability of the traffic system is adequately described, and the effects of the unstable focuses and saddle points on the system are suppressed to slow down the traffic flow. In addition, the unstable bifurcation points can be eliminated and the Hopf bifurcation can be controlled to advance, delay, and disappear,so as to realize the control of the stability behavior of the traffic system, which can help to alleviate the traffic congestion and describe the actual traffic phenomena as well.
文摘Background: Bifurcation lesions pose a high risk for adverse events after percutaneous coronary intervention (PCI). Evidence supporting the benefits of the two-stent strategy (2SS) for treating coronary bifurcation lesions in India is limited. This study aimed to evaluate the clinical outcomes of various 2SSs for percutaneous transluminal coronary angioplasty for bifurcation lesions in India. Materials and Methods: This retrospective, observational, multicentric, real-world study included 64 patients over 8 years. Data on demographics, medical history, PCI procedures, and outcomes were recorded. Descriptive statistics were computed using the SPSS software. Results: Patients (n = 64) had an average age of 65.3 ± 11.1 years, with 78.1% males. Acute coronary syndrome was reported in 18.8%, chronic stable angina in 40.6%, and unstable angina in 34.4% of participants. Two-vessel disease was observed in 98.4% of patients, and 99.4% had true bifurcation lesions. The commonly involved vessels were the left anterior descending artery (50%), left circumflex coronary artery (34.4%), and first diagonal artery (43.8%). Mean percent diameter stenosis was 87.2% ± 10.1%. The mean number of stents used was 2.00 ± 0.34. The 2SS techniques included the T and small protrusion (TAP) (39.1%), double kissing (DK) crush (18.8%), and the culotte techniques (14.1%). Procedural and angiographic success rate was 92.18%. Major adverse cardiovascular events at 1-year follow-up occurred in 7.8% of cases. Conclusion: The 2SS for bifurcation lesions showed favorable in-hospital and follow-up outcomes. Findings can serve as a resource for bifurcation angioplasty in India. Larger real-world studies with robust methodology are needed to validate these results.
基金Supported by the National Nature Science Foundation of China (NSFC) under Grant No.60772023Li-Xia Duan wishes to acknowledge the support from NSFC under Grant No.10872014
文摘In this paper, we design a feedback controller, and analytically determine a control criterion so as to control the codimension-2 Bautin bifurcation in the chaotic Lfi system. According to the control criterion, we determine a potential Bautin bifurcation region (denoted by P) of the controlled system. This region contains the Bautin bifurcation region (denoted by Q) of the uncontrolled system as its proper subregion. The controlled system can exhibit Bautin bifurcation in P or its proper subregion provided the control gains are properly chosen. Particularly, we can control the appearance of Bautin bifurcation at any appointed point in the region P. Due to the relationship between Bantin bifurcation and Hopf bifurcation, the control scheme thereby is also viable for controlling the creation and stability of the Hopf bifurcation. In the controller, there are two terms: a linear term and a nonlinear cubic term. We show that the former determines the location of the Hopf bifurcation while the latter regulates its criticality. We also carry out numerical studies, and the simulation results confirm our analyticai predictions.
基金Project supported by the National Natural Science Foundation of China(Grant No.11372102)
文摘This paper is concerned with the Hopf bifurcation control of a modified Pan-like chaotic system. Based on the Routh-Hurwtiz theory and high-dimensional Hopf bifurcation theory, the existence and stability of the Hopf bifurcation depending on selected values of the system parameters are studied. The region of the stability for the Hopf bifurcation is investigated.By the hybrid control method, a nonlinear controller is designed for changing the Hopf bifurcation point and expanding the range of the stability. Discussions show that with the change of parameters of the controller, the Hopf bifurcation emerges at an expected location with predicted properties and the range of the Hopf bifurcation stability is expanded. Finally,numerical simulation is provided to confirm the analytic results.
文摘This paper presents a mathematical model consisting of conservation and balance laws (CBL) of classical continuum mechanics (CCM) and ordered rate constitutive theories in Lagrangian description derived using entropy inequality and the representation theorem for thermoviscoelastic solids (TVES) with rheology. The CBL and the constitutive theories take into account finite deformation and finite strain deformation physics and are based on contravariant deviatoric second Piola-Kirchhoff stress tensor and its work conjugate covariant Green’s strain tensor and their material derivatives of up to order m and n respectively. All published works on nonlinear dynamics of TVES with rheology are mostly based on phenomenological mathematical models. In rare instances, some aspects of CBL are used but are incorrectly altered to obtain mass, stiffness and damping matrices using space-time decoupled approaches. In the work presented in this paper, we show that this is not possible using CBL of CCM for TVES with rheology. Thus, the mathematical models used currently in the published works are not the correct description of the physics of nonlinear dynamics of TVES with rheology. The mathematical model used in the present work is strictly based on the CBL of CCM and is thermodynamically and mathematically consistent and the space-time coupled finite element methodology used in this work is unconditionally stable and provides solutions with desired accuracy and is ideally suited for nonlinear dynamics of TVES with memory. The work in this paper is the first presentation of a mathematical model strictly based on CBL of CCM and the solution of the mathematical model is obtained using unconditionally stable space-time coupled computational methodology that provides control over the errors in the evolution. Both space-time coupled and space-time decoupled finite element formulations are considered for obtaining solutions of the IVPs described by the mathematical model and are presented in the paper. Factors or the physics influencing dynamic response and dynamic bifurcation for TVES with rheology are identified and are also demonstrated through model problem studies. A simple model problem consisting of a rod (1D) of TVES material with memory fixed at one end and subjected to harmonic excitation at the other end is considered to study nonlinear dynamics of TVES with rheology, frequency response as well as dynamic bifurcation phenomenon.