The aims of this paper are to discuss global existence and uniqueness of strong solution for a class of isentropic compressible navier-Stokes equations with non-Newtonian in one-dimensional bounded intervals. We prove...The aims of this paper are to discuss global existence and uniqueness of strong solution for a class of isentropic compressible navier-Stokes equations with non-Newtonian in one-dimensional bounded intervals. We prove two global existence results on strong solutions of isentropic compressible Navier-Stokes equations. The first result shows only the existence. And the second one shows the existence and uniqueness result based on the first result, but the uniqueness requires some compatibility condition.展开更多
This work presents a new application for the Hierarchical Function Expansion Method for the solution of the Navier-Stokes equations for compressible fluids in two dimensions and in high velocity. This method is based ...This work presents a new application for the Hierarchical Function Expansion Method for the solution of the Navier-Stokes equations for compressible fluids in two dimensions and in high velocity. This method is based on the finite elements method using the Petrov-Galerkin formulation, know as SUPG (Streamline Upwind Petrov-Galerkin), applied with the expansion of the variables into hierarchical functions. To test and validate the numerical method proposed as well as the computational program developed simulations are performed for some cases whose theoretical solutions are known. These cases are the following: continuity test, stability and convergence test, temperature step problem, and several oblique shocks. The objective of the last cases is basically to verify the capture of the shock wave by the method developed. The results obtained in the simulations with the proposed method were good both qualitatively and quantitatively when compared with the theoretical solutions. This allows concluding that the objectives of this work are reached.展开更多
In this paper,we consider the weak solutions of compressible Navier-StokesLandau-Lifshitz-Maxwell(CNSLLM)system for quantum fluids with a linear density dependent viscosity in a 3D torus.By introducing the cold pressu...In this paper,we consider the weak solutions of compressible Navier-StokesLandau-Lifshitz-Maxwell(CNSLLM)system for quantum fluids with a linear density dependent viscosity in a 3D torus.By introducing the cold pressure Pc,we prove the global existence of weak solutions with the pressure P+Pc,where P=Aργwithγ≥1.Our main result extends the one in[13]on the quantum Navier-Stokes equations to the CNSLLM system.展开更多
In this paper,Runge-Kutta Discontinuous Galerkin(RKDG) finite element method is presented to solve the onedimensional inviscid compressible gas dynamic equations in a Lagrangian coordinate.The equations are discreti...In this paper,Runge-Kutta Discontinuous Galerkin(RKDG) finite element method is presented to solve the onedimensional inviscid compressible gas dynamic equations in a Lagrangian coordinate.The equations are discretized by the DG method in space and the temporal discretization is accomplished by the total variation diminishing Runge-Kutta method.A limiter based on the characteristic field decomposition is applied to maintain stability and non-oscillatory property of the RKDG method.For multi-medium fluid simulation,the two cells adjacent to the interface are treated differently from other cells.At first,a linear Riemann solver is applied to calculate the numerical ?ux at the interface.Numerical examples show that there is some oscillation in the vicinity of the interface.Then a nonlinear Riemann solver based on the characteristic formulation of the equation and the discontinuity relations is adopted to calculate the numerical ?ux at the interface,which suppresses the oscillation successfully.Several single-medium and multi-medium fluid examples are given to demonstrate the reliability and efficiency of the algorithm.展开更多
The compressible Navier-Stokes equations driven by a time-periodic external force are considered in this article. We establish the existence of weak time-periodic solutions and improve the result from [3] in the follo...The compressible Navier-Stokes equations driven by a time-periodic external force are considered in this article. We establish the existence of weak time-periodic solutions and improve the result from [3] in the following sense: we extend the class of pressure functions, that is, we consider lower exponent γ.展开更多
In this paper,we discuss the local existence of H^i(i=2,4)solutions for a 1D compressible viscous micropolar fluid model with non-homogeneous temperature boundary.The proof is based on the local existence of solutions...In this paper,we discuss the local existence of H^i(i=2,4)solutions for a 1D compressible viscous micropolar fluid model with non-homogeneous temperature boundary.The proof is based on the local existence of solutions in[1].展开更多
A method that series perturbations approximate solutions to N-S equations with boundary conditions was discussed and adopted. Then the method was proved in which the asymptotic solutions of viscous fluid flow past a s...A method that series perturbations approximate solutions to N-S equations with boundary conditions was discussed and adopted. Then the method was proved in which the asymptotic solutions of viscous fluid flow past a sphere were deducted. By the ameliorative asymptotic expansion matched method, the matched functions, are determined easily and the ameliorative curve of drag coefficient is coincident well with measured data in the case that Reynolds number is less than or equal to 40 000.展开更多
It is shown that when the compressibility of a fluid is taken into account, the nonlinear term disappears in the Euler equation. The validity of this approach is proved by the example of capillary waves.
By using characteristic analysis of the linear and nonlinear parabolic stability equations ( PSE), PSE of primitive disturbance variables are proved to be parabolic intotal. By using sub- characteristic analysis of PS...By using characteristic analysis of the linear and nonlinear parabolic stability equations ( PSE), PSE of primitive disturbance variables are proved to be parabolic intotal. By using sub- characteristic analysis of PSE, the linear PSE are proved to be elliptical and hyperbolic-parabolic for velocity U, in subsonic and supersonic, respectively; the nonlinear PSE are proved to be elliptical and hyperbolic-parabolic for relocity U + u in subsonic and supersonic., respectively . The methods are gained that the remained ellipticity is removed from the PSE by characteristic and sub-characteristic theories , the results for the linear PSE are consistent with the known results, and the influence of the Mach number is also given out. At the same time , the methods of removing the remained ellipticity are further obtained from the nonlinear PSE .展开更多
Lagrangianmethods arewidely used inmany fields formulti-material compressible flow simulations such as in astrophysics and inertial confinement fusion(ICF),due to their distinguished advantage in capturing material in...Lagrangianmethods arewidely used inmany fields formulti-material compressible flow simulations such as in astrophysics and inertial confinement fusion(ICF),due to their distinguished advantage in capturing material interfaces automatically.In some of these applications,multiple internal energy equations such as those for electron,ion and radiation are involved.In the past decades,several staggeredgrid based Lagrangian schemes have been developed which are designed to solve the internal energy equation directly.These schemes can be easily extended to solve problems with multiple internal energy equations.However such schemes are typically not conservative for the total energy.Recently,significant progress has been made in developing cell-centered Lagrangian schemes which have several good properties such as conservation for all the conserved variables and easiness for remapping.However,these schemes are commonly designed to solve the Euler equations in the form of the total energy,therefore they cannot be directly applied to the solution of either the single internal energy equation or the multiple internal energy equations without significant modifications.Such modifications,if not designed carefully,may lead to the loss of some of the nice properties of the original schemes such as conservation of the total energy.In this paper,we establish an equivalency relationship between the cell-centered discretizations of the Euler equations in the forms of the total energy and of the internal energy.By a carefully designed modification in the implementation,the cell-centered Lagrangian scheme can be used to solve the compressible fluid flow with one or multiple internal energy equations and meanwhile it does not lose its total energy conservation property.An advantage of this approach is that it can be easily applied to many existing large application codes which are based on the framework of solving multiple internal energy equations.Several two dimensional numerical examples for both Euler equations and three-temperature hydrodynamic equations in cylindrical coordinates are presented to demonstrate the performance of the scheme in terms of symmetry preserving,accuracy and non-oscillatory performance.展开更多
The fundamental problem of the statistical dynamics of a turbulent flow, formulated in terms of characteristic functionals, has already been pointed out in the work of E. Hopf. In his work he deduced a functional equa...The fundamental problem of the statistical dynamics of a turbulent flow, formulated in terms of characteristic functionals, has already been pointed out in the work of E. Hopf. In his work he deduced a functional equation governing the evolution of the characteristic functional of a turbulent velocity field in an incompressible field. In this paper we present a derivation of a dynamical equation governing the evolution of the characteristic functional of a turbulent velocity field in a compressible field. However, the characteristic functional equations we derived are governing the motions of an ideal gas and van der Waals gas.展开更多
In this paper, we consider the isentropic compressible Navier-Stokes-Poisson equations arising from transport of charged particles or motion of gaseous stars in astrophysics. We are interested in the case that the vis...In this paper, we consider the isentropic compressible Navier-Stokes-Poisson equations arising from transport of charged particles or motion of gaseous stars in astrophysics. We are interested in the case that the viscosity coefficients depend on the density and shall degenerate in the appearance of (density) vacuum, and show the Ll-stability of weak solutions for arbitrarily large data on spatial multi-dimensional bounded or periodic domain or whole space.展开更多
Bubble column reactors can be simulated by the two fluid model(TFM) coupled with the population balance equation(PBE). For the large industrial bubble columns, the compressibility due to the pressure difference may in...Bubble column reactors can be simulated by the two fluid model(TFM) coupled with the population balance equation(PBE). For the large industrial bubble columns, the compressibility due to the pressure difference may introduce notable bubble size variation. In order to address the compressibility effect, the PBE should be reformulated and coupled with the compressible TFM. In this work, the PBE with a compressibility term was formulated from single bubble dynamics, the mean Sauter diameters predicted by the compressible TFM coupled with the PBE were compared with the analytical solutions obtained by the ideal gas law. It was proven that the mesoscale formulations presented in this work were physically consistent with the macroscale modeling. It can be used to simulate large industrial plants when the compressibility induced bubble size variation is important.展开更多
Abstract In this paper, we study the stability of solutions of the Cauchy problem for 1-D compressible Narvier- Stokes equations with general initial data. The asymptotic limit of solution is found, under some conditi...Abstract In this paper, we study the stability of solutions of the Cauchy problem for 1-D compressible Narvier- Stokes equations with general initial data. The asymptotic limit of solution is found, under some conditions. The results in this paper imply the case that the limit function of solution as t → ee is a viscous contact wave in the sense, which approximates the contact discontinuity on any finite-time interval as the heat conduction coefficients toward zero. As a by-product, the decay rates of the solution for the fast diffusion equations are also obtained. The proofs are based on the elementary energy method and the study of asymptotic behavior of the solution to the fast diffusion equation.展开更多
In this paper,we describe how to construct a finite-difference shockcapturing method for the numerical solution of the Euler equation of gas dynamics on arbitrary two-dimensional domainΩ,possibly with moving boundary...In this paper,we describe how to construct a finite-difference shockcapturing method for the numerical solution of the Euler equation of gas dynamics on arbitrary two-dimensional domainΩ,possibly with moving boundary.The boundaries of the domain are assumed to be changing due to the movement of solid objects/obstacles/walls.Although the motion of the boundary could be coupled with the fluid,all of the numerical tests are performed assuming that such a motion is prescribed and independent of the fluid flow.The method is based on discretizing the equation on a regular Cartesian grid in a rectangular domainΩ_(R)⊃Ω.Ωe identify inner and ghost points.The inner points are the grid points located insideΩ,while the ghost points are the grid points that are outsideΩbut have at least one neighbor insideΩ.The evolution equations for inner points data are obtained from the discretization of the governing equation,while the data at the ghost points are obtained by a suitable extrapolation of the primitive variables(density,velocities and pressure).Particular care is devoted to a proper description of the boundary conditions for both fixed and time dependent domains.Several numerical experiments are conducted to illustrate the validity of themethod.Ωe demonstrate that the second order of accuracy is numerically assessed on genuinely two-dimensional problems.展开更多
文摘The aims of this paper are to discuss global existence and uniqueness of strong solution for a class of isentropic compressible navier-Stokes equations with non-Newtonian in one-dimensional bounded intervals. We prove two global existence results on strong solutions of isentropic compressible Navier-Stokes equations. The first result shows only the existence. And the second one shows the existence and uniqueness result based on the first result, but the uniqueness requires some compatibility condition.
文摘This work presents a new application for the Hierarchical Function Expansion Method for the solution of the Navier-Stokes equations for compressible fluids in two dimensions and in high velocity. This method is based on the finite elements method using the Petrov-Galerkin formulation, know as SUPG (Streamline Upwind Petrov-Galerkin), applied with the expansion of the variables into hierarchical functions. To test and validate the numerical method proposed as well as the computational program developed simulations are performed for some cases whose theoretical solutions are known. These cases are the following: continuity test, stability and convergence test, temperature step problem, and several oblique shocks. The objective of the last cases is basically to verify the capture of the shock wave by the method developed. The results obtained in the simulations with the proposed method were good both qualitatively and quantitatively when compared with the theoretical solutions. This allows concluding that the objectives of this work are reached.
基金partially supported by the National Natural Sciences Foundation of China(11931010,12061003)。
文摘In this paper,we consider the weak solutions of compressible Navier-StokesLandau-Lifshitz-Maxwell(CNSLLM)system for quantum fluids with a linear density dependent viscosity in a 3D torus.By introducing the cold pressure Pc,we prove the global existence of weak solutions with the pressure P+Pc,where P=Aργwithγ≥1.Our main result extends the one in[13]on the quantum Navier-Stokes equations to the CNSLLM system.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11261035,11171038,and 10771019)the Science Reaearch Foundation of Institute of Higher Education of Inner Mongolia Autonomous Region,China (Grant No. NJZZ12198)the Natural Science Foundation of Inner Mongolia Autonomous Region,China (Grant No. 2012MS0102)
文摘In this paper,Runge-Kutta Discontinuous Galerkin(RKDG) finite element method is presented to solve the onedimensional inviscid compressible gas dynamic equations in a Lagrangian coordinate.The equations are discretized by the DG method in space and the temporal discretization is accomplished by the total variation diminishing Runge-Kutta method.A limiter based on the characteristic field decomposition is applied to maintain stability and non-oscillatory property of the RKDG method.For multi-medium fluid simulation,the two cells adjacent to the interface are treated differently from other cells.At first,a linear Riemann solver is applied to calculate the numerical ?ux at the interface.Numerical examples show that there is some oscillation in the vicinity of the interface.Then a nonlinear Riemann solver based on the characteristic formulation of the equation and the discontinuity relations is adopted to calculate the numerical ?ux at the interface,which suppresses the oscillation successfully.Several single-medium and multi-medium fluid examples are given to demonstrate the reliability and efficiency of the algorithm.
基金supported by National Natural Science Foundation of China-NSAF(11271305,11531010)the Fundamental Research Funds for Xiamen University(201412G004)supported by National Natural Science Foundation of ChinaNSAF(11271305,11531010)
文摘The compressible Navier-Stokes equations driven by a time-periodic external force are considered in this article. We establish the existence of weak time-periodic solutions and improve the result from [3] in the following sense: we extend the class of pressure functions, that is, we consider lower exponent γ.
基金Supported by the NNSF of China(11271066)Supported by the grant of Shanghai Education Commission(13ZZ048)
文摘In this paper,we discuss the local existence of H^i(i=2,4)solutions for a 1D compressible viscous micropolar fluid model with non-homogeneous temperature boundary.The proof is based on the local existence of solutions in[1].
文摘A method that series perturbations approximate solutions to N-S equations with boundary conditions was discussed and adopted. Then the method was proved in which the asymptotic solutions of viscous fluid flow past a sphere were deducted. By the ameliorative asymptotic expansion matched method, the matched functions, are determined easily and the ameliorative curve of drag coefficient is coincident well with measured data in the case that Reynolds number is less than or equal to 40 000.
文摘It is shown that when the compressibility of a fluid is taken into account, the nonlinear term disappears in the Euler equation. The validity of this approach is proved by the example of capillary waves.
基金the National Natural Science Foundation of China (10032050)the National 863 Program Foundation of China (2002AA633100)
文摘By using characteristic analysis of the linear and nonlinear parabolic stability equations ( PSE), PSE of primitive disturbance variables are proved to be parabolic intotal. By using sub- characteristic analysis of PSE, the linear PSE are proved to be elliptical and hyperbolic-parabolic for velocity U, in subsonic and supersonic, respectively; the nonlinear PSE are proved to be elliptical and hyperbolic-parabolic for relocity U + u in subsonic and supersonic., respectively . The methods are gained that the remained ellipticity is removed from the PSE by characteristic and sub-characteristic theories , the results for the linear PSE are consistent with the known results, and the influence of the Mach number is also given out. At the same time , the methods of removing the remained ellipticity are further obtained from the nonlinear PSE .
基金J.Cheng is supported in part by NSFC grants 10972043,10931004 and 91130002Additional support is provided by the National Basic Research Program of China under grant 2011CB309702+1 种基金C.-W.Shu is supported in part by ARO grant W911NF-08-1-0520 and NSF grant DMS-0809086Q.Zeng is supported in part by NSFC grant 11001026 and CAEP project 2011B0202041.
文摘Lagrangianmethods arewidely used inmany fields formulti-material compressible flow simulations such as in astrophysics and inertial confinement fusion(ICF),due to their distinguished advantage in capturing material interfaces automatically.In some of these applications,multiple internal energy equations such as those for electron,ion and radiation are involved.In the past decades,several staggeredgrid based Lagrangian schemes have been developed which are designed to solve the internal energy equation directly.These schemes can be easily extended to solve problems with multiple internal energy equations.However such schemes are typically not conservative for the total energy.Recently,significant progress has been made in developing cell-centered Lagrangian schemes which have several good properties such as conservation for all the conserved variables and easiness for remapping.However,these schemes are commonly designed to solve the Euler equations in the form of the total energy,therefore they cannot be directly applied to the solution of either the single internal energy equation or the multiple internal energy equations without significant modifications.Such modifications,if not designed carefully,may lead to the loss of some of the nice properties of the original schemes such as conservation of the total energy.In this paper,we establish an equivalency relationship between the cell-centered discretizations of the Euler equations in the forms of the total energy and of the internal energy.By a carefully designed modification in the implementation,the cell-centered Lagrangian scheme can be used to solve the compressible fluid flow with one or multiple internal energy equations and meanwhile it does not lose its total energy conservation property.An advantage of this approach is that it can be easily applied to many existing large application codes which are based on the framework of solving multiple internal energy equations.Several two dimensional numerical examples for both Euler equations and three-temperature hydrodynamic equations in cylindrical coordinates are presented to demonstrate the performance of the scheme in terms of symmetry preserving,accuracy and non-oscillatory performance.
文摘The fundamental problem of the statistical dynamics of a turbulent flow, formulated in terms of characteristic functionals, has already been pointed out in the work of E. Hopf. In his work he deduced a functional equation governing the evolution of the characteristic functional of a turbulent velocity field in an incompressible field. In this paper we present a derivation of a dynamical equation governing the evolution of the characteristic functional of a turbulent velocity field in a compressible field. However, the characteristic functional equations we derived are governing the motions of an ideal gas and van der Waals gas.
基金supported by the National Natural Science Foundation of China (No. 10871134)the Program for New Century Excellent Talents in University support of the Ministry of Education of China (No. NCET-06-0186)
文摘In this paper, we consider the isentropic compressible Navier-Stokes-Poisson equations arising from transport of charged particles or motion of gaseous stars in astrophysics. We are interested in the case that the viscosity coefficients depend on the density and shall degenerate in the appearance of (density) vacuum, and show the Ll-stability of weak solutions for arbitrarily large data on spatial multi-dimensional bounded or periodic domain or whole space.
文摘Bubble column reactors can be simulated by the two fluid model(TFM) coupled with the population balance equation(PBE). For the large industrial bubble columns, the compressibility due to the pressure difference may introduce notable bubble size variation. In order to address the compressibility effect, the PBE should be reformulated and coupled with the compressible TFM. In this work, the PBE with a compressibility term was formulated from single bubble dynamics, the mean Sauter diameters predicted by the compressible TFM coupled with the PBE were compared with the analytical solutions obtained by the ideal gas law. It was proven that the mesoscale formulations presented in this work were physically consistent with the macroscale modeling. It can be used to simulate large industrial plants when the compressibility induced bubble size variation is important.
基金supported by National Natural Science Foundation of China (Grant No.10971171)
文摘Abstract In this paper, we study the stability of solutions of the Cauchy problem for 1-D compressible Narvier- Stokes equations with general initial data. The asymptotic limit of solution is found, under some conditions. The results in this paper imply the case that the limit function of solution as t → ee is a viscous contact wave in the sense, which approximates the contact discontinuity on any finite-time interval as the heat conduction coefficients toward zero. As a by-product, the decay rates of the solution for the fast diffusion equations are also obtained. The proofs are based on the elementary energy method and the study of asymptotic behavior of the solution to the fast diffusion equation.
基金The work of A.Chertock was supported in part by the NSF Grants DMS-1216974 and DMS-1521051The work of A.Kurganov was supported in part by the NSF Grants DMS-1216957 and DMS-1521009The work of G.Russo was supported partially by the University of Catania,Project F.I.R.Charge Transport in Graphene and Low Dimensional Systems,and partially by ITN-ETN Horizon 2020 Project Mod Comp Shock,Modeling and Computation on Shocks and Interfaces,Project Reference 642768.
文摘In this paper,we describe how to construct a finite-difference shockcapturing method for the numerical solution of the Euler equation of gas dynamics on arbitrary two-dimensional domainΩ,possibly with moving boundary.The boundaries of the domain are assumed to be changing due to the movement of solid objects/obstacles/walls.Although the motion of the boundary could be coupled with the fluid,all of the numerical tests are performed assuming that such a motion is prescribed and independent of the fluid flow.The method is based on discretizing the equation on a regular Cartesian grid in a rectangular domainΩ_(R)⊃Ω.Ωe identify inner and ghost points.The inner points are the grid points located insideΩ,while the ghost points are the grid points that are outsideΩbut have at least one neighbor insideΩ.The evolution equations for inner points data are obtained from the discretization of the governing equation,while the data at the ghost points are obtained by a suitable extrapolation of the primitive variables(density,velocities and pressure).Particular care is devoted to a proper description of the boundary conditions for both fixed and time dependent domains.Several numerical experiments are conducted to illustrate the validity of themethod.Ωe demonstrate that the second order of accuracy is numerically assessed on genuinely two-dimensional problems.