Broody behavior is regulated by hypothalamic prolactin secretion,which seriously affects egg production in poulty production.Numerous studies have provided evidence that animal behavior is governed by dynamic bidirect...Broody behavior is regulated by hypothalamic prolactin secretion,which seriously affects egg production in poulty production.Numerous studies have provided evidence that animal behavior is governed by dynamic bidirectional communication between specific gut bacteria and their host via the brain-gut-microbiome axis.However,little research focused on how the gut microbiota influence broody behavior in poultry.In this study,Zhedong white geese in laying and brooding phases were selected.Ten differentially abundant bacteria in cecum were detected between brooding and laying geese through metagenomic analyses and 16S rRNA sequencing(P<0.05),and Bacteroides fragilis was specifically identified as a key driver species in the brooding geese.Moverover,the serum metabolites were quantified,and the 313 differentially abundant metabolites were found between the two groups of different physiological geese.They were primarily enriched in the tryptophan metabolism pathways.Pearson correlation analyses revealed there was a significant positive correlation between B.fragilis abundance and the context of 11 tryptophan metabolism-related metabolites(such as serotonin,etc.)in broody geese,which hinted that those tryptophan metabolites might be produced or driven by B.fragilis.Finally,the serum hormone levels were also measured.We found there was a positive correlation between B.fragilis abundance and content of serotonin.Besides,prolactin secreted by the pituitary gland was greater in brooding geese than that in laying geese,which was also highly correlated with B.fragilis abundance.This result implied that B.fragilis could promote the secretion of prolactin by the pituitary gland.Together,the current study findings provided the information on gut microbiota influencing broody behavior,B.fragilis produced or driven more serum serotonin,and stimulated the pituitary gland to secret more prolactin,which potentially offered a new enlightenment for the intervention of broody behavior in poultry.展开更多
Serotonin syndrome(SS)is a drug-induced clinical syndrome resulting from increased serotonergic activity in the central nervous system.Although more than seven decades have passed since the first description of SS,it ...Serotonin syndrome(SS)is a drug-induced clinical syndrome resulting from increased serotonergic activity in the central nervous system.Although more than seven decades have passed since the first description of SS,it is still an enigma in terms of terminology,clinical features,etiology,pathophysiology,diagnostic criteria,and therapeutic measures.The majority of SS cases have previously been reported by toxicology or psychiatry centers,particularly in people with mental illness.However,serotonergic medications are used for a variety of conditions other than mental illness.Serotonergic properties have been discovered in several new drugs,including over-the-counter medications.These days,cases are reported in non-toxicology centers,such as perioperative settings,neurology clinics,cardiology settings,gynecology settings,and pediatric clinics.Overdoses or poisonings of serotonergic agents constituted the majority of the cases observed in toxicology or psychiatry centers.Overdose or poisoning of serotonergic drugs is uncommon in other clinical settings.Patients may develop SS at therapeutic dosages.Moreover,these patients may continue to use serotonergic medications even if they develop mild to moderate SS due to several reasons.Thus,the clinical presentation(onset,severity,and clinical features)in such instances may not exactly match what toxicologists or psychiatrists observe in their respective settings.They produce considerable diversity in many aspects of SS.However,other experts discount these new developments in SS.Since SS is a potentially lethal illness,consensus is required on several concerns related to SS.展开更多
BACKGROUND Serotonin receptor 2B(5-HT2B receptor)plays a critical role in many chronic pain conditions.The possible involvement of the 5-HT2B receptor in the altered gut sensation of irritable bowel syndrome with diar...BACKGROUND Serotonin receptor 2B(5-HT2B receptor)plays a critical role in many chronic pain conditions.The possible involvement of the 5-HT2B receptor in the altered gut sensation of irritable bowel syndrome with diarrhea(IBS-D)was investigated in the present study.AIM To investigate the possible involvement of 5-HT2B receptor in the altered gut sensation in rat model and patients with IBS-D.METHODS Rectosigmoid biopsies were collected from 18 patients with IBS-D and 10 patients with irritable bowel syndrome with constipation who fulfilled the Rome IV criteria and 15 healthy controls.The expression level of the 5-HT2B receptor in colon tissue was measured using an enzyme-linked immunosorbent assay and correlated with abdominal pain scores.The IBS-D rat model was induced by intracolonic instillation of acetic acid and wrap restraint.Alterations in visceral sensitivity and 5-HT2B receptor and transient receptor potential vanilloid type 1(TRPV1)expression were examined following 5-HT2B receptor antagonist adminis-tration.Changes in visceral sensitivity after administration of the TRPV1 antago-INTRODUCTION Irritable bowel syndrome(IBS)is a chronic functional bowel disorder characterized by recurrent abdominal pain with altered bowel habits that affects approximately 15%of the population worldwide[1].IBS significantly impacts the quality of life of patients.Although the pathogenesis of IBS is not completely understood,the role of abnormal visceral sensitivity in IBS has recently emerged[2,3].5-Hydroxytryptamine(5-HT)is known to play a key role in the physiological states of the gastrointestinal tract.Plasma 5-HT levels in IBS with diarrhea(IBS-D)patients were greater than those in healthy controls[4],suggesting a possible role of 5-HT in the pathogenesis of IBS-D.The serotonin receptor 2(5-HT2 receptor)family comprises three subtypes:5-HT2A,5-HT2B,and 5-HT2c.All 5-HT2 receptors exhibit 46%-50%overall sequence identity,and all of these receptors preferentially bind to Gq/11 to increase inositol phosphates and intracellular calcium mobilization[5].5-HT2B receptors are widely expressed throughout the gut,and experimental evidence suggests that the primary function of 5-HT2B receptors is to mediate contractile responses to 5-HT through its action on smooth muscle[6].The 5-HT2B receptor is localized to both neurons of the myenteric nerve plexus and smooth muscle in the human colon.The 5-HT2B receptor mediates 5-HT-evoked contraction of longitudinal smooth muscle[6].These findings suggest that the 5-HT2B receptor could play an important role in modulating colonic motility,which could affect sensory signaling in the gut.Other laboratories have shown that the 5-HT2B receptor participates in the development of mechanical and formalin-induced hyperalgesia[7,8].A 5-HT2B receptor antagonist reduced 2,4,6-trinitrobenzene sulfonic acid(TNBS)and stress-induced visceral hyperalgesia in rats[9,10].However,the role of the 5-HT2B receptor in IBS-D patients and in acetic acid-and wrap restraint-induced IBS-D rat models was not investigated.展开更多
Background Serotonin is an important signaling molecule that regulates secretory and sensory functions in the gut.Gut microbiota has been demonstrated to affect serotonin synthesis in rodent models.However,how gut mic...Background Serotonin is an important signaling molecule that regulates secretory and sensory functions in the gut.Gut microbiota has been demonstrated to affect serotonin synthesis in rodent models.However,how gut microbes regulate intestinal serotonin production in piglets remains vague.To investigate the relationship between microbiota and serotonin specifically in the colon,microbial composition and serotonin concentration were analyzed in ileum-cannulated piglets subjected to antibiotic infusion from the ileum when comparing with saline infusion.Microbes that correlated positively with serotonin production were isolated from piglet colon and were further used to investi-gate the regulation mechanisms on serotonin production in IPEC-J2 and a putative enterochromaffin cell line RIN-14B cells.Results Antibiotic infusion increased quantities of Lactobacillus amylovorus(LA)that positively correlated with increased serotonin concentrations in the colon,while no effects observed for Limosilactobacillus reuteri(LR).To understand how microbes regulate serotonin,representative strains of LA,LR,and Streptococcus alactolyticus(SA,enriched in feces from prior observation)were selected for cell culture studies.Compared to the control group,LA,LR and SA supernatants significantly up-regulated tryptophan hydroxylase 1(TPH1)expression and promoted serotonin production in IPEC-J2 cells,while in RIN-14B cells only LA exerted similar action.To investigate potential mechanisms mediated by microbe-derived molecules,microbial metabolites including lactate,acetate,glutamine,andγ-aminobutyric acid were selected for cell treatment based on computational and metabolite profiling in bacte-rial supernatant.Among these metabolites,acetate upregulated the expression of free fatty acid receptor 3 and TPH1 while downregulated indoleamine 2,3-dioxygenase 1.Similar effects were also recapitulated when treating the cells with AR420626,an agonist targeting free fatty acid receptor 3.Conclusions Overall,these results suggest that Lactobacillus amylovorus showed a positive correlation with sero-tonin production in the pig gut and exhibited a remarkable ability to regulate serotonin production in cell cultures.These findings provide evidence that microbial metabolites mediate the dialogue between microbes and host,which reveals a potential approach using microbial manipulation to regulate intestinal serotonin biosynthesis.展开更多
In animals,serotonin is a neurotransmitter and mood regulator.In plants,serotonin functions in energy acquisition,tissue maintenance,delay of senescence,and response to biotic and abiotic stresses.In this study,we exa...In animals,serotonin is a neurotransmitter and mood regulator.In plants,serotonin functions in energy acquisition,tissue maintenance,delay of senescence,and response to biotic and abiotic stresses.In this study,we examined the effect of serotonin enrichment of rice endosperm on plant growth,endosperm development,and grain quality.To do so,TDCs and T5H were selected as targets for serotonin fortification.Overexpression of TDC1 or TDC3 increased serotonin accumulation relative to overexpression of T5H in rice grain.Transgenic lines of target genes driven by the Gt1 promoter showed better field performance than those driven by the Ubi promoter.Overexpression of T5H showed little effect on plant growth or grain physicochemical quality.In neuronal cell culture assays,serotonin induced neuroprotective action against apoptosis.Breeding of rice cultivars with high serotonin content may be beneficial for health and nutrition.展开更多
基金supported by the Modern Agro-industry Technology Research System,China(CARS-42-3)the“JBGS”Project of Seed Industry Revitalization in Jiangsu Province,China(JBGS(2021)023)the Project in Ministry of Agriculture and Rural Affairs of China(19211168).
文摘Broody behavior is regulated by hypothalamic prolactin secretion,which seriously affects egg production in poulty production.Numerous studies have provided evidence that animal behavior is governed by dynamic bidirectional communication between specific gut bacteria and their host via the brain-gut-microbiome axis.However,little research focused on how the gut microbiota influence broody behavior in poultry.In this study,Zhedong white geese in laying and brooding phases were selected.Ten differentially abundant bacteria in cecum were detected between brooding and laying geese through metagenomic analyses and 16S rRNA sequencing(P<0.05),and Bacteroides fragilis was specifically identified as a key driver species in the brooding geese.Moverover,the serum metabolites were quantified,and the 313 differentially abundant metabolites were found between the two groups of different physiological geese.They were primarily enriched in the tryptophan metabolism pathways.Pearson correlation analyses revealed there was a significant positive correlation between B.fragilis abundance and the context of 11 tryptophan metabolism-related metabolites(such as serotonin,etc.)in broody geese,which hinted that those tryptophan metabolites might be produced or driven by B.fragilis.Finally,the serum hormone levels were also measured.We found there was a positive correlation between B.fragilis abundance and content of serotonin.Besides,prolactin secreted by the pituitary gland was greater in brooding geese than that in laying geese,which was also highly correlated with B.fragilis abundance.This result implied that B.fragilis could promote the secretion of prolactin by the pituitary gland.Together,the current study findings provided the information on gut microbiota influencing broody behavior,B.fragilis produced or driven more serum serotonin,and stimulated the pituitary gland to secret more prolactin,which potentially offered a new enlightenment for the intervention of broody behavior in poultry.
文摘Serotonin syndrome(SS)is a drug-induced clinical syndrome resulting from increased serotonergic activity in the central nervous system.Although more than seven decades have passed since the first description of SS,it is still an enigma in terms of terminology,clinical features,etiology,pathophysiology,diagnostic criteria,and therapeutic measures.The majority of SS cases have previously been reported by toxicology or psychiatry centers,particularly in people with mental illness.However,serotonergic medications are used for a variety of conditions other than mental illness.Serotonergic properties have been discovered in several new drugs,including over-the-counter medications.These days,cases are reported in non-toxicology centers,such as perioperative settings,neurology clinics,cardiology settings,gynecology settings,and pediatric clinics.Overdoses or poisonings of serotonergic agents constituted the majority of the cases observed in toxicology or psychiatry centers.Overdose or poisoning of serotonergic drugs is uncommon in other clinical settings.Patients may develop SS at therapeutic dosages.Moreover,these patients may continue to use serotonergic medications even if they develop mild to moderate SS due to several reasons.Thus,the clinical presentation(onset,severity,and clinical features)in such instances may not exactly match what toxicologists or psychiatrists observe in their respective settings.They produce considerable diversity in many aspects of SS.However,other experts discount these new developments in SS.Since SS is a potentially lethal illness,consensus is required on several concerns related to SS.
基金The Health Commission of Jinshan District,Shanghai,China,No.JSKJ-KTMS-2019-01The Youth Research Foundation of Jinshan Hospital of Fudan University,No.JYQN-JC-202101 and No.JYQN-JC-202216The Reserve Discipline Construction of Jinshan Hospital of Fudan University,No.HBXK-2021-2.
文摘BACKGROUND Serotonin receptor 2B(5-HT2B receptor)plays a critical role in many chronic pain conditions.The possible involvement of the 5-HT2B receptor in the altered gut sensation of irritable bowel syndrome with diarrhea(IBS-D)was investigated in the present study.AIM To investigate the possible involvement of 5-HT2B receptor in the altered gut sensation in rat model and patients with IBS-D.METHODS Rectosigmoid biopsies were collected from 18 patients with IBS-D and 10 patients with irritable bowel syndrome with constipation who fulfilled the Rome IV criteria and 15 healthy controls.The expression level of the 5-HT2B receptor in colon tissue was measured using an enzyme-linked immunosorbent assay and correlated with abdominal pain scores.The IBS-D rat model was induced by intracolonic instillation of acetic acid and wrap restraint.Alterations in visceral sensitivity and 5-HT2B receptor and transient receptor potential vanilloid type 1(TRPV1)expression were examined following 5-HT2B receptor antagonist adminis-tration.Changes in visceral sensitivity after administration of the TRPV1 antago-INTRODUCTION Irritable bowel syndrome(IBS)is a chronic functional bowel disorder characterized by recurrent abdominal pain with altered bowel habits that affects approximately 15%of the population worldwide[1].IBS significantly impacts the quality of life of patients.Although the pathogenesis of IBS is not completely understood,the role of abnormal visceral sensitivity in IBS has recently emerged[2,3].5-Hydroxytryptamine(5-HT)is known to play a key role in the physiological states of the gastrointestinal tract.Plasma 5-HT levels in IBS with diarrhea(IBS-D)patients were greater than those in healthy controls[4],suggesting a possible role of 5-HT in the pathogenesis of IBS-D.The serotonin receptor 2(5-HT2 receptor)family comprises three subtypes:5-HT2A,5-HT2B,and 5-HT2c.All 5-HT2 receptors exhibit 46%-50%overall sequence identity,and all of these receptors preferentially bind to Gq/11 to increase inositol phosphates and intracellular calcium mobilization[5].5-HT2B receptors are widely expressed throughout the gut,and experimental evidence suggests that the primary function of 5-HT2B receptors is to mediate contractile responses to 5-HT through its action on smooth muscle[6].The 5-HT2B receptor is localized to both neurons of the myenteric nerve plexus and smooth muscle in the human colon.The 5-HT2B receptor mediates 5-HT-evoked contraction of longitudinal smooth muscle[6].These findings suggest that the 5-HT2B receptor could play an important role in modulating colonic motility,which could affect sensory signaling in the gut.Other laboratories have shown that the 5-HT2B receptor participates in the development of mechanical and formalin-induced hyperalgesia[7,8].A 5-HT2B receptor antagonist reduced 2,4,6-trinitrobenzene sulfonic acid(TNBS)and stress-induced visceral hyperalgesia in rats[9,10].However,the role of the 5-HT2B receptor in IBS-D patients and in acetic acid-and wrap restraint-induced IBS-D rat models was not investigated.
基金the Natural Science Foundation of China(31902166,32030104).
文摘Background Serotonin is an important signaling molecule that regulates secretory and sensory functions in the gut.Gut microbiota has been demonstrated to affect serotonin synthesis in rodent models.However,how gut microbes regulate intestinal serotonin production in piglets remains vague.To investigate the relationship between microbiota and serotonin specifically in the colon,microbial composition and serotonin concentration were analyzed in ileum-cannulated piglets subjected to antibiotic infusion from the ileum when comparing with saline infusion.Microbes that correlated positively with serotonin production were isolated from piglet colon and were further used to investi-gate the regulation mechanisms on serotonin production in IPEC-J2 and a putative enterochromaffin cell line RIN-14B cells.Results Antibiotic infusion increased quantities of Lactobacillus amylovorus(LA)that positively correlated with increased serotonin concentrations in the colon,while no effects observed for Limosilactobacillus reuteri(LR).To understand how microbes regulate serotonin,representative strains of LA,LR,and Streptococcus alactolyticus(SA,enriched in feces from prior observation)were selected for cell culture studies.Compared to the control group,LA,LR and SA supernatants significantly up-regulated tryptophan hydroxylase 1(TPH1)expression and promoted serotonin production in IPEC-J2 cells,while in RIN-14B cells only LA exerted similar action.To investigate potential mechanisms mediated by microbe-derived molecules,microbial metabolites including lactate,acetate,glutamine,andγ-aminobutyric acid were selected for cell treatment based on computational and metabolite profiling in bacte-rial supernatant.Among these metabolites,acetate upregulated the expression of free fatty acid receptor 3 and TPH1 while downregulated indoleamine 2,3-dioxygenase 1.Similar effects were also recapitulated when treating the cells with AR420626,an agonist targeting free fatty acid receptor 3.Conclusions Overall,these results suggest that Lactobacillus amylovorus showed a positive correlation with sero-tonin production in the pig gut and exhibited a remarkable ability to regulate serotonin production in cell cultures.These findings provide evidence that microbial metabolites mediate the dialogue between microbes and host,which reveals a potential approach using microbial manipulation to regulate intestinal serotonin biosynthesis.
基金the National Natural Science Foundation of China(32270586,31825019,and 31801322)the Department of Science and Technology of Jiangsu Province(BM2022008-02 and BE2022336).
文摘In animals,serotonin is a neurotransmitter and mood regulator.In plants,serotonin functions in energy acquisition,tissue maintenance,delay of senescence,and response to biotic and abiotic stresses.In this study,we examined the effect of serotonin enrichment of rice endosperm on plant growth,endosperm development,and grain quality.To do so,TDCs and T5H were selected as targets for serotonin fortification.Overexpression of TDC1 or TDC3 increased serotonin accumulation relative to overexpression of T5H in rice grain.Transgenic lines of target genes driven by the Gt1 promoter showed better field performance than those driven by the Ubi promoter.Overexpression of T5H showed little effect on plant growth or grain physicochemical quality.In neuronal cell culture assays,serotonin induced neuroprotective action against apoptosis.Breeding of rice cultivars with high serotonin content may be beneficial for health and nutrition.