期刊文献+
共找到1,484篇文章
< 1 2 75 >
每页显示 20 50 100
Pythagorician Divisors and Applications to Some Diophantine Equations
1
作者 François Emmanuel Tanoé Prosper Kouadio Kimou 《Advances in Pure Mathematics》 2023年第2期35-70,共36页
We consider the Pythagoras equation X<sup>2</sup> +Y<sup>2</sup> = Z<sup>2</sup>, and for any solution of the type (a,b = 2<sup>s</sup>b<sub>1 </sub>≠0,c) ... We consider the Pythagoras equation X<sup>2</sup> +Y<sup>2</sup> = Z<sup>2</sup>, and for any solution of the type (a,b = 2<sup>s</sup>b<sub>1 </sub>≠0,c) ∈ N<sup>*3</sup>, s ≥ 2, b<sub>1</sub>odd, (a,b,c) ≡ (±1,0,1)(mod 4), c > a , c > b, and gcd(a,b,c) = 1, we then prove the Pythagorician divisors Theorem, which results in the following: , where (d,d′′) (resp. (e,e<sup>n</sup>)) are unique particular divisors of a and b, such that a = dd′′ (resp. b = ee′′ ), these divisors are called: Pythagorician divisors from a, (resp. from b). Let’s put λ ∈{0,1}, defined by: and S = s -λ (s -1). Then such that . Moreover the map is a bijection. We apply this new tool to obtain a new classification of the primitive, positive and non-trivial solutions of the Pythagoras equations: a<sup>2</sup> + b<sup>2</sup> = c<sup>2</sup> via the Pythagorician parameters (d,e,S ). We obtain for (d, e) fixed, the equivalence class of any Pythagorician solution (a,b,c), checking , namely: . We also update the solutions of some Diophantine equations of degree 2, already known, but very important for the resolution of other equations. With this tool of Pythagorean divisors, we have obtained (in another paper) new recurrent methods to solve Fermat’s equation: a<sup>4</sup> + b<sup>4 </sup>= c<sup>4</sup>, other than usual infinite descent method;and to solve congruent numbers problem. We believe that this tool can bring new arguments, for Diophantine resolution, of the general equations of Fermat: a<sup>2p</sup> + b<sup>2p</sup> = c<sup>2p</sup> and a<sup>p</sup> + b<sup>p</sup> = c<sup>p</sup>. MSC2020-Mathematical Sciences Classification System: 11A05-11A51-11D25-11D41-11D72. 展开更多
关键词 Pythagoras equation Pythagorician Triplets diophantine equations of Degree 2 Factorisation-Gcd-Fermat’s equations
下载PDF
Diophantine Quotients and Remainders with Applications to Fermat and Pythagorean Equations
2
作者 Prosper Kouadio Kimou François Emmanuel Tanoé 《American Journal of Computational Mathematics》 2023年第1期199-210,共12页
Diophantine equations have always fascinated mathematicians about existence, finitude, and the calculation of possible solutions. Among these equations, one of them will be the object of our research. This is the Pyth... Diophantine equations have always fascinated mathematicians about existence, finitude, and the calculation of possible solutions. Among these equations, one of them will be the object of our research. This is the Pythagoras’- Fermat’s equation defined as follows.                                                                                         (1) when , it is well known that this equation has an infinity of solutions but has none (non-trivial) when . We also know that the last result, named Fermat-Wiles theorem (or FLT) was obtained at great expense and its understanding remains out of reach even for a good fringe of professional mathematicians. The aim of this research is to set up new simple but effective tools in the treatment of Diophantine equations and that of Pythagoras-Fermat. The tools put forward in this research are the properties of the quotients and the Diophantine remainders which we define as follows. Let a non-trivial triplet () solution of Equation (1) such that . and are called the Diophantine quotients and remainders of solution . We compute the remainder and the quotient of b and c by a using the division algorithm. Hence, we have: and et with . We prove the following important results. if and only if and if and only if . Also, we deduce that or for any hypothetical solution . We illustrate these results by effectively computing the Diophantine quotients and remainders in the case of Pythagorean triplets using a Python program. In the end, we apply the previous properties to directly prove a partial result of FLT. . 展开更多
关键词 diophantine equation Modular Arithmetic Fermat-Wiles Theorem Pythagorean Triplets Division Theorem Division Algorithm Python Program diophantine Quotients diophantine Remainders
下载PDF
A Note on Diophantine Equation Ax^4+ 1 = By^2 and Erds' Conjecture on Combinatorial Number
3
作者 曹珍富 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 1998年第2期1-3,共3页
A necessary and suffcient condition is given for the equation Ax4+ 1 =By2 to have positive integer solution, and an effective method is derived for solving equation a2x4 + 1 = By2 in positive integers x, y for given h... A necessary and suffcient condition is given for the equation Ax4+ 1 =By2 to have positive integer solution, and an effective method is derived for solving equation a2x4 + 1 = By2 in positive integers x, y for given ho and B completely. Also, using a recently result of Ribet, Darmon and Merel, we proved that Erdos’ conjecture on combinatorial number is right. 展开更多
关键词 diophantine equations SEQUENCE combinatorial number
下载PDF
On Diophantine Equation X(X+1)(X+2)(X+3)=14Y(Y+1)(Y+2)(Y+3) 被引量:2
4
作者 段辉明 郑继明 《Journal of Southwest Jiaotong University(English Edition)》 2009年第1期90-93,共4页
The Diophantine equation X( X + 1 ) ( X + 2 ) ( X + 3 ) = 14Y( Y + 1 ) ( Y + 2 ) ( Y + 3 ) still remains open. Using recurrence sequence, Maple software, Pell equation and quadraric residue, this pap... The Diophantine equation X( X + 1 ) ( X + 2 ) ( X + 3 ) = 14Y( Y + 1 ) ( Y + 2 ) ( Y + 3 ) still remains open. Using recurrence sequence, Maple software, Pell equation and quadraric residue, this paper proved it has only two positive integer solutions, i. e., (X,Y) = (5,2) ,(7,3). 展开更多
关键词 Integer solution diophantine equation Recurrent sequence Quadratic residue
下载PDF
A Kind of Diophantine Equations in Finite Simple Groups 被引量:3
5
作者 曹珍富 《Northeastern Mathematical Journal》 CSCD 2000年第4期391-397,共7页
In this paper, we prove that if p, q are distinct primes, (p,q)≡(1,7) (mod 12) and Legendres symbol pq=1 , then the equation 1+p a=2 bq c+2 dp eq f has only solutions of the form (a,b,c,d,e,f)=... In this paper, we prove that if p, q are distinct primes, (p,q)≡(1,7) (mod 12) and Legendres symbol pq=1 , then the equation 1+p a=2 bq c+2 dp eq f has only solutions of the form (a,b,c,d,e,f)=(t,0,0,0,t,0), where t is a non negative integer. We also give all solutions of a kind of generalized Ramanujan Nagell equations by using the theories of imaginary quadratic field and Pells equation. 展开更多
关键词 exponential diophantine equation generalized Ramanujan Nagell equation finite simple group difference set
下载PDF
Complete solution of the diophantine equation A^2x^4-By^2=1 and some related problems 被引量:1
6
作者 曹珍富 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2001年第2期108-110,共3页
We prove that diophantine equation in title has at most one positive integer solution for any positive integers A>1, B>1. It follows that Lucas problem is very simple to solve and a recent result of Bennett ... We prove that diophantine equation in title has at most one positive integer solution for any positive integers A>1, B>1. It follows that Lucas problem is very simple to solve and a recent result of Bennett is very simple to prove. 展开更多
关键词 quartic diophantine equation COMPUTER C++
下载PDF
Solvability of the Diophantine equations x^p+2^(2m)y^4=p^kz^2 and x^p+y^2=p^kz^4
7
作者 曹珍富 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2002年第2期107-109,共3页
We study the solvability of two classes of Diophantine equations by using some new methods and new results in this paper. Let p be an odd prime and B n denote nth Bernoulli number. We prove that if p≡1(mod 4) and p... We study the solvability of two classes of Diophantine equations by using some new methods and new results in this paper. Let p be an odd prime and B n denote nth Bernoulli number. We prove that if p≡1(mod 4) and pB (p-1)/2 , then the equation x p+2 2m n 4=p ky 2, m,n,k∈[FK(W+3mm\.3mm][TPP107A,+3mm?3mm,BP], k>1, gcd (x,py)=1, and the equation x p+y 2=p kz 4, k∈[FK(W+3mm\.3mm][TPP107A,+3mm?3mm,BP], gcd (x,y)=1, k>1, 2|y have no integral solutions respectively. 展开更多
关键词 exponential diophantine equation SOLVABILITY public key CRYPTOSYSTEMS
下载PDF
A New Proof of Diophantine Equation ■
8
作者 ZHU HUI-LIN 《Communications in Mathematical Research》 CSCD 2009年第3期282-288,共7页
By using algebraic number theory and p-adic analysis method, we give a new and simple proof of Diophantine equation (^n2) = (^m4)
关键词 binomial diophantine equation fundamental unit FACTORIZATION p-adic analysis method
下载PDF
On Polynomials Solutions of Quadratic Diophantine Equations
9
作者 Amara Chandoul 《Advances in Pure Mathematics》 2011年第4期155-159,共5页
Let P:=P(t) be a polynomial in Z[X]\{0,1} In this paper, we consider the number of polynomial solutions of Diophantine equation E:X2–(P2–P)Y2–(4P2–2)X+(4P2–4P)Y=0. We also obtain some formulas and recurrence rela... Let P:=P(t) be a polynomial in Z[X]\{0,1} In this paper, we consider the number of polynomial solutions of Diophantine equation E:X2–(P2–P)Y2–(4P2–2)X+(4P2–4P)Y=0. We also obtain some formulas and recurrence relations on the polynomial solution (Xn,Yn) of 展开更多
关键词 POLYNOMIAL SOLUTIONS Pell’s equation diophantine equation
下载PDF
Heron Triangle and Diophantine Equation
10
作者 YANG Shi-chun MA Chang- wei 《Chinese Quarterly Journal of Mathematics》 CSCD 北大核心 2005年第3期242-246,共5页
In this paper, we study the quantic Diophantine equation (1) with elementary geometry method, therefore all positive integer solutions of the equation (1) are obtained, and existence of Heron triangle whose median... In this paper, we study the quantic Diophantine equation (1) with elementary geometry method, therefore all positive integer solutions of the equation (1) are obtained, and existence of Heron triangle whose median lengths are all positive integer are discussed here. 展开更多
关键词 quantic diophantine equation positive integer solution Heron triangle MEDIAN
下载PDF
A Variant of Fermat’s Diophantine Equation
11
作者 Serdar Beji 《Advances in Pure Mathematics》 2021年第12期929-936,共8页
A variant of Fermat’s last Diophantine equation is proposed by adjusting the number of terms in accord with the power of terms and a theorem describing the solubility conditions is stated. Numerically obtained primit... A variant of Fermat’s last Diophantine equation is proposed by adjusting the number of terms in accord with the power of terms and a theorem describing the solubility conditions is stated. Numerically obtained primitive solutions are presented for several cases with number of terms equal to or greater than powers. Further, geometric representations of solutions for the second and third power equations are devised by recasting the general equation in a form with rational solutions less than unity. Finally, it is suggested to consider negative and complex integers in seeking solutions to Diophantine forms in general. 展开更多
关键词 Variant of Fermat’s Last equation Positive Integer Solutions of New Fermat-Type equations Geometric Representations for Solutions of New diophantine equations
下载PDF
Non-Negative Integer Solutions of Two Diophantine Equations 2x + 9y = z2 and 5x + 9y = z2
12
作者 Md. Al-Amin Khan Abdur Rashid Md. Sharif Uddin 《Journal of Applied Mathematics and Physics》 2016年第4期762-765,共4页
In this paper, we study two Diophantine equations of the type p<sup>x</sup> + 9<sup>y</sup> = z<sup>2</sup> , where p is a prime number. We find that the equation 2<sup>x</... In this paper, we study two Diophantine equations of the type p<sup>x</sup> + 9<sup>y</sup> = z<sup>2</sup> , where p is a prime number. We find that the equation 2<sup>x</sup> + 9<sup>y</sup> = z<sup>2</sup> has exactly two solutions (x, y, z) in non-negative integer i.e., {(3, 0, 3),(4, 1, 5)} but 5<sup>x</sup> + 9<sup>y</sup> = z<sup>2</sup> has no non-negative integer solution. 展开更多
关键词 Exponential diophantine equation Integer Solutions
下载PDF
On the Diophantine Equation y^2= px(x^2+ 2)
13
作者 WANG Xiao-ying 《Chinese Quarterly Journal of Mathematics》 CSCD 2009年第4期499-503,共5页
For any fixed odd prime p, let N(p) denote the number of positive integer solutions (x, y) of the equation y^2 = px(x^2 + 2). In this paper, using some properties of binary quartic Diophantine equations, we pro... For any fixed odd prime p, let N(p) denote the number of positive integer solutions (x, y) of the equation y^2 = px(x^2 + 2). In this paper, using some properties of binary quartic Diophantine equations, we prove that ifp ≡ 5 or 7(mod 8), then N(p) = 0; ifp ≡ 1(mod 8), then N(p) 〈 1; if p〉 3 andp ≡ 3(rood 8), then N(p) ≤ 2. 展开更多
关键词 cubic and quartic diophantine equation number of solutions upper bound 2000 MR Subject Classification: 11D25
下载PDF
Diophantine Equations and the Freeness of Mobius Groups
14
作者 Marin Gutan 《Applied Mathematics》 2014年第10期1400-1411,共12页
Let p and q be two fixed non zero integers verifying the condition gcd(p,q) = 1. We check solutions in non zero integers a1,b1,a2,b2 and a3 for the following Diophantine equations: (B1) (B2) . The equations (B1) and (... Let p and q be two fixed non zero integers verifying the condition gcd(p,q) = 1. We check solutions in non zero integers a1,b1,a2,b2 and a3 for the following Diophantine equations: (B1) (B2) . The equations (B1) and (B2) were considered by R.C. Lyndon and J.L. Ullman in [1] and A.F. Beardon in [2] in connection with the freeness of the M?bius group generated by two matrices of namely and where .?They proved that if one of the equations (B1) or (B2) has solutions in non zero integers then the group is not free. We give algorithms to decide if these equations admit solutions. We obtain an arithmetical criteria on p and q for which (B1) admits solutions. We show that for all p and q the equations (B1) and (B2) have only a finite number of solutions. 展开更多
关键词 diophantine equation Mobius Groups Free Group
下载PDF
关于“DIOPHANTINE EQUATIONS RELATED TO FINITE GROUPS”
15
作者 王修林 邓谋杰 《哈尔滨师范大学自然科学学报》 CAS 1997年第1期27-29,共3页
本文利用推广的Pell方程法给出了文[1]中某些定理的简化证明。
关键词 丢番图方程 PELL方程 有限群 正整数解
全文增补中
关于Diophantine方程(20n)~x+(21n)~y=(29n)~z(英文) 被引量:11
16
作者 程智 孙翠芳 杜先能 《应用数学》 CSCD 北大核心 2013年第1期129-133,共5页
设a,b,c是满足条件a2+b2=c2的两两互素的正整数.Jesmanowicz于1956年猜想对于任意给定的正整数n,方程(an)x+(bn)y=(cn)z仅有解(x,y,z)=(2,2,2).本文证明了方程(20n)x+(21n)y=(29n)z有唯一解(x,y,z)=(2,2,2).
关键词 JESMANOWICZ猜想 diophantine方程 正整数解
下载PDF
关于Diophantine方程x^3±1=pqy^2 被引量:21
17
作者 管训贵 杜先存 《安徽大学学报(自然科学版)》 CAS 北大核心 2014年第1期29-35,共7页
关于Diophantine方程x3±1=Dy2至今仍未解决.论文利用同余式、平方剩余、Pell方程解的性质、递归序列证明:(1)p≡1(mod 12)为素数,q=12s2+1(s是正奇数)为素数,(p q)=-1时,Diophantine方程x3±1=pqy2仅有整数解(x,y)=(1,0);(2)p... 关于Diophantine方程x3±1=Dy2至今仍未解决.论文利用同余式、平方剩余、Pell方程解的性质、递归序列证明:(1)p≡1(mod 12)为素数,q=12s2+1(s是正奇数)为素数,(p q)=-1时,Diophantine方程x3±1=pqy2仅有整数解(x,y)=(1,0);(2)p≡1(mod 24)为素数,q=12s2+1(s是正奇数)为素数,(p q)=-1时,Diophantine方程x3±1=pqy2仅有整数解(x,y)=(-1,0). 展开更多
关键词 diophantine方程 奇素数 整数解 同余式 平方剩余 递归序列
下载PDF
关于Diophantine方程x^3±1=3Dy^2 被引量:26
18
作者 杜先存 吴丛博 赵金娥 《沈阳大学学报(自然科学版)》 CAS 2013年第1期84-86,共3页
设D是奇素数,运用同余式、平方剩余、递归序列、Maple程序等初等方法得出了当D=27t2+1(t∈Z+)时,Diophantine方程x3±1=3 Dy2无正整数解的一个充分条件.
关键词 diophantine方程 奇素数 同余 平方剩余 递归序列 正整数解
下载PDF
关于Diophantine方程(44n)^(x)+(117n)^(y)=(125n)^(z)的整数解 被引量:6
19
作者 鲁伟阳 高丽 郝虹斐 《纯粹数学与应用数学》 CSCD 2014年第6期627-633,共7页
在Jesmanowícz猜想的基础上,利用初等方法证明了对任意的正整数n,Diophantine方程(44n)x+(117n)y=(125n)z仅有正整数解(x,y,z)=(2,2,2).
关键词 Jeismanowicz猜想 diophantine方程 初等方法 幸福数
下载PDF
关于Diophantine方程x^3-5~3=3py^2 被引量:4
20
作者 杨海 武静 任荣珍 《纺织高校基础科学学报》 CAS 2014年第4期418-420,共3页
设p是给定的素数,运用初等数论方法证明了方程x3-53=3py2有适合gcd(x,y)=1的正整数解(x,y)的充要条件是p=Q(27a4+45a2+25),其中a是正整数,Q(27a4+45a2+25)是27a4+45a2+25的无平方因子部分.由此可知,当p≠7或13(mod30)时,该方程没有适合g... 设p是给定的素数,运用初等数论方法证明了方程x3-53=3py2有适合gcd(x,y)=1的正整数解(x,y)的充要条件是p=Q(27a4+45a2+25),其中a是正整数,Q(27a4+45a2+25)是27a4+45a2+25的无平方因子部分.由此可知,当p≠7或13(mod30)时,该方程没有适合gcd(x,y)=1的正整数解(x,y). 展开更多
关键词 三次diophantine方程 可解性 无平方因子
下载PDF
上一页 1 2 75 下一页 到第
使用帮助 返回顶部