We consider the Pythagoras equation X<sup>2</sup> +Y<sup>2</sup> = Z<sup>2</sup>, and for any solution of the type (a,b = 2<sup>s</sup>b<sub>1 </sub>≠0,c) ...We consider the Pythagoras equation X<sup>2</sup> +Y<sup>2</sup> = Z<sup>2</sup>, and for any solution of the type (a,b = 2<sup>s</sup>b<sub>1 </sub>≠0,c) ∈ N<sup>*3</sup>, s ≥ 2, b<sub>1</sub>odd, (a,b,c) ≡ (±1,0,1)(mod 4), c > a , c > b, and gcd(a,b,c) = 1, we then prove the Pythagorician divisors Theorem, which results in the following: , where (d,d′′) (resp. (e,e<sup>n</sup>)) are unique particular divisors of a and b, such that a = dd′′ (resp. b = ee′′ ), these divisors are called: Pythagorician divisors from a, (resp. from b). Let’s put λ ∈{0,1}, defined by: and S = s -λ (s -1). Then such that . Moreover the map is a bijection. We apply this new tool to obtain a new classification of the primitive, positive and non-trivial solutions of the Pythagoras equations: a<sup>2</sup> + b<sup>2</sup> = c<sup>2</sup> via the Pythagorician parameters (d,e,S ). We obtain for (d, e) fixed, the equivalence class of any Pythagorician solution (a,b,c), checking , namely: . We also update the solutions of some Diophantine equations of degree 2, already known, but very important for the resolution of other equations. With this tool of Pythagorean divisors, we have obtained (in another paper) new recurrent methods to solve Fermat’s equation: a<sup>4</sup> + b<sup>4 </sup>= c<sup>4</sup>, other than usual infinite descent method;and to solve congruent numbers problem. We believe that this tool can bring new arguments, for Diophantine resolution, of the general equations of Fermat: a<sup>2p</sup> + b<sup>2p</sup> = c<sup>2p</sup> and a<sup>p</sup> + b<sup>p</sup> = c<sup>p</sup>. MSC2020-Mathematical Sciences Classification System: 11A05-11A51-11D25-11D41-11D72.展开更多
Diophantine equations have always fascinated mathematicians about existence, finitude, and the calculation of possible solutions. Among these equations, one of them will be the object of our research. This is the Pyth...Diophantine equations have always fascinated mathematicians about existence, finitude, and the calculation of possible solutions. Among these equations, one of them will be the object of our research. This is the Pythagoras’- Fermat’s equation defined as follows. (1) when , it is well known that this equation has an infinity of solutions but has none (non-trivial) when . We also know that the last result, named Fermat-Wiles theorem (or FLT) was obtained at great expense and its understanding remains out of reach even for a good fringe of professional mathematicians. The aim of this research is to set up new simple but effective tools in the treatment of Diophantine equations and that of Pythagoras-Fermat. The tools put forward in this research are the properties of the quotients and the Diophantine remainders which we define as follows. Let a non-trivial triplet () solution of Equation (1) such that . and are called the Diophantine quotients and remainders of solution . We compute the remainder and the quotient of b and c by a using the division algorithm. Hence, we have: and et with . We prove the following important results. if and only if and if and only if . Also, we deduce that or for any hypothetical solution . We illustrate these results by effectively computing the Diophantine quotients and remainders in the case of Pythagorean triplets using a Python program. In the end, we apply the previous properties to directly prove a partial result of FLT. .展开更多
A necessary and suffcient condition is given for the equation Ax4+ 1 =By2 to have positive integer solution, and an effective method is derived for solving equation a2x4 + 1 = By2 in positive integers x, y for given h...A necessary and suffcient condition is given for the equation Ax4+ 1 =By2 to have positive integer solution, and an effective method is derived for solving equation a2x4 + 1 = By2 in positive integers x, y for given ho and B completely. Also, using a recently result of Ribet, Darmon and Merel, we proved that Erdos’ conjecture on combinatorial number is right.展开更多
The Diophantine equation X( X + 1 ) ( X + 2 ) ( X + 3 ) = 14Y( Y + 1 ) ( Y + 2 ) ( Y + 3 ) still remains open. Using recurrence sequence, Maple software, Pell equation and quadraric residue, this pap...The Diophantine equation X( X + 1 ) ( X + 2 ) ( X + 3 ) = 14Y( Y + 1 ) ( Y + 2 ) ( Y + 3 ) still remains open. Using recurrence sequence, Maple software, Pell equation and quadraric residue, this paper proved it has only two positive integer solutions, i. e., (X,Y) = (5,2) ,(7,3).展开更多
In this paper, we prove that if p, q are distinct primes, (p,q)≡(1,7) (mod 12) and Legendres symbol pq=1 , then the equation 1+p a=2 bq c+2 dp eq f has only solutions of the form (a,b,c,d,e,f)=...In this paper, we prove that if p, q are distinct primes, (p,q)≡(1,7) (mod 12) and Legendres symbol pq=1 , then the equation 1+p a=2 bq c+2 dp eq f has only solutions of the form (a,b,c,d,e,f)=(t,0,0,0,t,0), where t is a non negative integer. We also give all solutions of a kind of generalized Ramanujan Nagell equations by using the theories of imaginary quadratic field and Pells equation.展开更多
We prove that diophantine equation in title has at most one positive integer solution for any positive integers A>1, B>1. It follows that Lucas problem is very simple to solve and a recent result of Bennett ...We prove that diophantine equation in title has at most one positive integer solution for any positive integers A>1, B>1. It follows that Lucas problem is very simple to solve and a recent result of Bennett is very simple to prove.展开更多
We study the solvability of two classes of Diophantine equations by using some new methods and new results in this paper. Let p be an odd prime and B n denote nth Bernoulli number. We prove that if p≡1(mod 4) and p...We study the solvability of two classes of Diophantine equations by using some new methods and new results in this paper. Let p be an odd prime and B n denote nth Bernoulli number. We prove that if p≡1(mod 4) and pB (p-1)/2 , then the equation x p+2 2m n 4=p ky 2, m,n,k∈[FK(W+3mm\.3mm][TPP107A,+3mm?3mm,BP], k>1, gcd (x,py)=1, and the equation x p+y 2=p kz 4, k∈[FK(W+3mm\.3mm][TPP107A,+3mm?3mm,BP], gcd (x,y)=1, k>1, 2|y have no integral solutions respectively.展开更多
Let P:=P(t) be a polynomial in Z[X]\{0,1} In this paper, we consider the number of polynomial solutions of Diophantine equation E:X2–(P2–P)Y2–(4P2–2)X+(4P2–4P)Y=0. We also obtain some formulas and recurrence rela...Let P:=P(t) be a polynomial in Z[X]\{0,1} In this paper, we consider the number of polynomial solutions of Diophantine equation E:X2–(P2–P)Y2–(4P2–2)X+(4P2–4P)Y=0. We also obtain some formulas and recurrence relations on the polynomial solution (Xn,Yn) of展开更多
In this paper, we study the quantic Diophantine equation (1) with elementary geometry method, therefore all positive integer solutions of the equation (1) are obtained, and existence of Heron triangle whose median...In this paper, we study the quantic Diophantine equation (1) with elementary geometry method, therefore all positive integer solutions of the equation (1) are obtained, and existence of Heron triangle whose median lengths are all positive integer are discussed here.展开更多
A variant of Fermat’s last Diophantine equation is proposed by adjusting the number of terms in accord with the power of terms and a theorem describing the solubility conditions is stated. Numerically obtained primit...A variant of Fermat’s last Diophantine equation is proposed by adjusting the number of terms in accord with the power of terms and a theorem describing the solubility conditions is stated. Numerically obtained primitive solutions are presented for several cases with number of terms equal to or greater than powers. Further, geometric representations of solutions for the second and third power equations are devised by recasting the general equation in a form with rational solutions less than unity. Finally, it is suggested to consider negative and complex integers in seeking solutions to Diophantine forms in general.展开更多
In this paper, we study two Diophantine equations of the type p<sup>x</sup> + 9<sup>y</sup> = z<sup>2</sup> , where p is a prime number. We find that the equation 2<sup>x</...In this paper, we study two Diophantine equations of the type p<sup>x</sup> + 9<sup>y</sup> = z<sup>2</sup> , where p is a prime number. We find that the equation 2<sup>x</sup> + 9<sup>y</sup> = z<sup>2</sup> has exactly two solutions (x, y, z) in non-negative integer i.e., {(3, 0, 3),(4, 1, 5)} but 5<sup>x</sup> + 9<sup>y</sup> = z<sup>2</sup> has no non-negative integer solution.展开更多
For any fixed odd prime p, let N(p) denote the number of positive integer solutions (x, y) of the equation y^2 = px(x^2 + 2). In this paper, using some properties of binary quartic Diophantine equations, we pro...For any fixed odd prime p, let N(p) denote the number of positive integer solutions (x, y) of the equation y^2 = px(x^2 + 2). In this paper, using some properties of binary quartic Diophantine equations, we prove that ifp ≡ 5 or 7(mod 8), then N(p) = 0; ifp ≡ 1(mod 8), then N(p) 〈 1; if p〉 3 andp ≡ 3(rood 8), then N(p) ≤ 2.展开更多
Let p and q be two fixed non zero integers verifying the condition gcd(p,q) = 1. We check solutions in non zero integers a1,b1,a2,b2 and a3 for the following Diophantine equations: (B1) (B2) . The equations (B1) and (...Let p and q be two fixed non zero integers verifying the condition gcd(p,q) = 1. We check solutions in non zero integers a1,b1,a2,b2 and a3 for the following Diophantine equations: (B1) (B2) . The equations (B1) and (B2) were considered by R.C. Lyndon and J.L. Ullman in [1] and A.F. Beardon in [2] in connection with the freeness of the M?bius group generated by two matrices of namely and where .?They proved that if one of the equations (B1) or (B2) has solutions in non zero integers then the group is not free. We give algorithms to decide if these equations admit solutions. We obtain an arithmetical criteria on p and q for which (B1) admits solutions. We show that for all p and q the equations (B1) and (B2) have only a finite number of solutions.展开更多
文摘We consider the Pythagoras equation X<sup>2</sup> +Y<sup>2</sup> = Z<sup>2</sup>, and for any solution of the type (a,b = 2<sup>s</sup>b<sub>1 </sub>≠0,c) ∈ N<sup>*3</sup>, s ≥ 2, b<sub>1</sub>odd, (a,b,c) ≡ (±1,0,1)(mod 4), c > a , c > b, and gcd(a,b,c) = 1, we then prove the Pythagorician divisors Theorem, which results in the following: , where (d,d′′) (resp. (e,e<sup>n</sup>)) are unique particular divisors of a and b, such that a = dd′′ (resp. b = ee′′ ), these divisors are called: Pythagorician divisors from a, (resp. from b). Let’s put λ ∈{0,1}, defined by: and S = s -λ (s -1). Then such that . Moreover the map is a bijection. We apply this new tool to obtain a new classification of the primitive, positive and non-trivial solutions of the Pythagoras equations: a<sup>2</sup> + b<sup>2</sup> = c<sup>2</sup> via the Pythagorician parameters (d,e,S ). We obtain for (d, e) fixed, the equivalence class of any Pythagorician solution (a,b,c), checking , namely: . We also update the solutions of some Diophantine equations of degree 2, already known, but very important for the resolution of other equations. With this tool of Pythagorean divisors, we have obtained (in another paper) new recurrent methods to solve Fermat’s equation: a<sup>4</sup> + b<sup>4 </sup>= c<sup>4</sup>, other than usual infinite descent method;and to solve congruent numbers problem. We believe that this tool can bring new arguments, for Diophantine resolution, of the general equations of Fermat: a<sup>2p</sup> + b<sup>2p</sup> = c<sup>2p</sup> and a<sup>p</sup> + b<sup>p</sup> = c<sup>p</sup>. MSC2020-Mathematical Sciences Classification System: 11A05-11A51-11D25-11D41-11D72.
文摘Diophantine equations have always fascinated mathematicians about existence, finitude, and the calculation of possible solutions. Among these equations, one of them will be the object of our research. This is the Pythagoras’- Fermat’s equation defined as follows. (1) when , it is well known that this equation has an infinity of solutions but has none (non-trivial) when . We also know that the last result, named Fermat-Wiles theorem (or FLT) was obtained at great expense and its understanding remains out of reach even for a good fringe of professional mathematicians. The aim of this research is to set up new simple but effective tools in the treatment of Diophantine equations and that of Pythagoras-Fermat. The tools put forward in this research are the properties of the quotients and the Diophantine remainders which we define as follows. Let a non-trivial triplet () solution of Equation (1) such that . and are called the Diophantine quotients and remainders of solution . We compute the remainder and the quotient of b and c by a using the division algorithm. Hence, we have: and et with . We prove the following important results. if and only if and if and only if . Also, we deduce that or for any hypothetical solution . We illustrate these results by effectively computing the Diophantine quotients and remainders in the case of Pythagorean triplets using a Python program. In the end, we apply the previous properties to directly prove a partial result of FLT. .
基金Supported by the Natural Science Foundation of Heilongjiang Province
文摘A necessary and suffcient condition is given for the equation Ax4+ 1 =By2 to have positive integer solution, and an effective method is derived for solving equation a2x4 + 1 = By2 in positive integers x, y for given ho and B completely. Also, using a recently result of Ribet, Darmon and Merel, we proved that Erdos’ conjecture on combinatorial number is right.
基金The Natural Science Foundation of Chongqing University of Post and Telecommunications (No.A2008-40)
文摘The Diophantine equation X( X + 1 ) ( X + 2 ) ( X + 3 ) = 14Y( Y + 1 ) ( Y + 2 ) ( Y + 3 ) still remains open. Using recurrence sequence, Maple software, Pell equation and quadraric residue, this paper proved it has only two positive integer solutions, i. e., (X,Y) = (5,2) ,(7,3).
文摘In this paper, we prove that if p, q are distinct primes, (p,q)≡(1,7) (mod 12) and Legendres symbol pq=1 , then the equation 1+p a=2 bq c+2 dp eq f has only solutions of the form (a,b,c,d,e,f)=(t,0,0,0,t,0), where t is a non negative integer. We also give all solutions of a kind of generalized Ramanujan Nagell equations by using the theories of imaginary quadratic field and Pells equation.
文摘We prove that diophantine equation in title has at most one positive integer solution for any positive integers A>1, B>1. It follows that Lucas problem is very simple to solve and a recent result of Bennett is very simple to prove.
文摘We study the solvability of two classes of Diophantine equations by using some new methods and new results in this paper. Let p be an odd prime and B n denote nth Bernoulli number. We prove that if p≡1(mod 4) and pB (p-1)/2 , then the equation x p+2 2m n 4=p ky 2, m,n,k∈[FK(W+3mm\.3mm][TPP107A,+3mm?3mm,BP], k>1, gcd (x,py)=1, and the equation x p+y 2=p kz 4, k∈[FK(W+3mm\.3mm][TPP107A,+3mm?3mm,BP], gcd (x,y)=1, k>1, 2|y have no integral solutions respectively.
文摘Let P:=P(t) be a polynomial in Z[X]\{0,1} In this paper, we consider the number of polynomial solutions of Diophantine equation E:X2–(P2–P)Y2–(4P2–2)X+(4P2–4P)Y=0. We also obtain some formulas and recurrence relations on the polynomial solution (Xn,Yn) of
基金Foundation item: Supported by the Natural Science Foundation of China(10271104)Supported by the Natural Science Foundation of Education Department of Sichuan Province(2004B25)
文摘In this paper, we study the quantic Diophantine equation (1) with elementary geometry method, therefore all positive integer solutions of the equation (1) are obtained, and existence of Heron triangle whose median lengths are all positive integer are discussed here.
文摘A variant of Fermat’s last Diophantine equation is proposed by adjusting the number of terms in accord with the power of terms and a theorem describing the solubility conditions is stated. Numerically obtained primitive solutions are presented for several cases with number of terms equal to or greater than powers. Further, geometric representations of solutions for the second and third power equations are devised by recasting the general equation in a form with rational solutions less than unity. Finally, it is suggested to consider negative and complex integers in seeking solutions to Diophantine forms in general.
文摘In this paper, we study two Diophantine equations of the type p<sup>x</sup> + 9<sup>y</sup> = z<sup>2</sup> , where p is a prime number. We find that the equation 2<sup>x</sup> + 9<sup>y</sup> = z<sup>2</sup> has exactly two solutions (x, y, z) in non-negative integer i.e., {(3, 0, 3),(4, 1, 5)} but 5<sup>x</sup> + 9<sup>y</sup> = z<sup>2</sup> has no non-negative integer solution.
基金Foundation item: Supported by the Natural Science Foundation of Shaanxi Province(2009JM1006)
文摘For any fixed odd prime p, let N(p) denote the number of positive integer solutions (x, y) of the equation y^2 = px(x^2 + 2). In this paper, using some properties of binary quartic Diophantine equations, we prove that ifp ≡ 5 or 7(mod 8), then N(p) = 0; ifp ≡ 1(mod 8), then N(p) 〈 1; if p〉 3 andp ≡ 3(rood 8), then N(p) ≤ 2.
文摘Let p and q be two fixed non zero integers verifying the condition gcd(p,q) = 1. We check solutions in non zero integers a1,b1,a2,b2 and a3 for the following Diophantine equations: (B1) (B2) . The equations (B1) and (B2) were considered by R.C. Lyndon and J.L. Ullman in [1] and A.F. Beardon in [2] in connection with the freeness of the M?bius group generated by two matrices of namely and where .?They proved that if one of the equations (B1) or (B2) has solutions in non zero integers then the group is not free. We give algorithms to decide if these equations admit solutions. We obtain an arithmetical criteria on p and q for which (B1) admits solutions. We show that for all p and q the equations (B1) and (B2) have only a finite number of solutions.
基金Supported by the NSF of China(11126173)Anhui Province Natural Science Foundation(1208085QA02)+1 种基金the NSF of China(10901002)the NSF of Anhui Province Education Committee(KJ2011Z151)