期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Wavelength-sensitive photocatalytic H2 evolution from H2S splitting over g-C3N4 with S,N-codoped carbon dots as the photosensitizer 被引量:2
1
作者 Zhanghui Xie Shan Yu +6 位作者 Xiang-Bing Fan Shiqian Wei Limei Yu Yunqian Zhong Xue-Wang Gao Fan Wu Ying Zhou 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第1期234-242,I0008,共10页
Photocatalytic splitting of hydrogen sulfide(H2S) for hydrogen evolution is a promising method to solve the energy and environmental issues.In this work,S,N-codoped carbon dots(S,N-CDs)/graphitic carbon nitride(g-C3N4... Photocatalytic splitting of hydrogen sulfide(H2S) for hydrogen evolution is a promising method to solve the energy and environmental issues.In this work,S,N-codoped carbon dots(S,N-CDs)/graphitic carbon nitride(g-C3N4) nanosheet is synthesized by hydrothermal method as an efficient photocatalyst for the decomposition of H2S.In addition to the characterization of the morphology and structure,chemical state,optical and electrochemical performances of S,N-CDs/g-C3N4,hydrogen evolution tests show that the activity of g-C3N4 is improved by introducing S,N-CDs,and the enhancement depends strongly on the wavelength of incident light.The photocatalytic hydrogen production rate of S,N-CDs/g-C3N4 composite reaches 832 μmol g-1h-1, which is 38 times to that of g-C3N4 under irradiation at 460 nm.Density functional theory calculations and electron paramagnetic resonance as well as photoluminescence technologies have altogether authenticated that the unique wavelength-dependent photosensitization of S,N-CDs on g-C3N4;meanwhile,a good match between the energy level of S,N-CDs and g-C3N4 is pivotal for the effective photocatalytic activity.Our work has unveiled the detailed mechanism of the photocatalytic activity enhancement in S,N-CDs/g-C3N4 composite and showed its potential in photocatalytic splitting of H2S for hydrogen evolution. 展开更多
关键词 PHOTOSENSITIZATION S n-codoped carbon dots Hydrogen sulfide splitting Photocatalytic hydrogen evolution
下载PDF
Effects of C,N-Codoped on the Corrosion Resistance of TiO_2 Films Prepared by Plasma Surface Alloying and Thermal Oxidation Duplex Process 被引量:1
2
作者 王鹤峰 唐宾 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2011年第3期495-498,共4页
C,N-codoped TiO 2 films have been deposited onto stainless steel substrates using plasma surface alloying and thermal oxidation duplex process.Composition analysis shows that the films shield the substrates entirely.T... C,N-codoped TiO 2 films have been deposited onto stainless steel substrates using plasma surface alloying and thermal oxidation duplex process.Composition analysis shows that the films shield the substrates entirely.The TiO 2 films are anatase in structure as characterized by X-ray diffraction.The electrochemical measurements show that the equilibrium corrosion potential positively shifts from-0.275 eV for bare stainless steel to-0.267 eV for C,N-codoped TiO 2 coated stainless steel,and the corrosion current density decreases from 1.3×10-5 A/cm2 to 4.1×10-6 A/cm2.The corrosion resistance obtained by electrochemistry noise also reveals that the C,N-codoped TiO 2 films provide good protection for stainless steel against corrosion in stimulated body fluid.The above results indicate that C,N-codoped TiO 2 films deposited by plasma surface alloying and thermal oxidation duplex process are effective in protecting stainless steel from corrosion. 展开更多
关键词 plasma surface alloying titanium dioxide C n-codoped corrosion stainless steel electrochemistry noise
下载PDF
Robust self-supported anode by integrating Sb2S3 nanoparticles with S,N-codoped graphene to enhance K-storage performance 被引量:12
3
作者 Yanying Lu Jun Chen 《Science China Chemistry》 SCIE EI CAS CSCD 2017年第12期1533-1539,共7页
Developing high-performance anode materials for potassium-ion batteries is significantly urgent. We here demonstrate Sb_2S_3 nanoparticles(~20 nm) homogeneously dispersed in porous S,N-codoped graphene framework(Sb_2S... Developing high-performance anode materials for potassium-ion batteries is significantly urgent. We here demonstrate Sb_2S_3 nanoparticles(~20 nm) homogeneously dispersed in porous S,N-codoped graphene framework(Sb_2S_3-SNG) as a self-supported anode material for potassium-ion batteries. The rational structure design of integrating Sb_2S_3 nanoparticles with S,N-codoped graphene contributes to high reactivity, strong affinity, good electric conductivity, and robust stability of the composite, enabling superior K-storage performance. Moreover, the self-supported architecture significantly decreases the inactive weight of the battery, resulting in a high energy density of a Sb_2S_3-SNG/KVPO_4 F-C full cell to ~166.3 W h kg^(-1). 展开更多
关键词 Sb2S3 nanoparticles S n-codoping self-supported graphene foam anode potassium-ion batteries
原文传递
Single Cu atom dispersed on S,N-codoped nanocarbon derived from shrimp shells for highly-efficient oxygen reduction reaction 被引量:2
4
作者 Hao Zhang Qingdi Sun +4 位作者 Qian He Ying Zhang Xiaohui He Tao Gan Hongbing Ji 《Nano Research》 SCIE EI CSCD 2022年第7期5995-6000,共6页
Recently,Cu-based single-atom catalysts(SACs)have garnered increasing attention as substitutes for platinum-based catalysts in the oxygen reduction reaction(ORR).Therefore,a facile,economical,and efficient synthetic m... Recently,Cu-based single-atom catalysts(SACs)have garnered increasing attention as substitutes for platinum-based catalysts in the oxygen reduction reaction(ORR).Therefore,a facile,economical,and efficient synthetic methodology for the preparation of a high-performance Cu-based SAC electrocatalyst for the ORR is extremely desired,but is also significantly challenging.In this study,we propose a ball-milling method to synthesize isolated metal SACs embedded in S,N-codoped nanocarbon(MNSDC,M=Cu,Fe,Co,Ni,Mn,Pt,and Pd).In particular,the Cu-NSDC SACs exhibit high electrochemical activity for the ORR with half-wave potential(E_(1/2))of 0.84 V(vs.reversible hydrogen electrode(RHE),20 mV higher than Pt/C)in alkaline electrolyte,excellent stability,and electrocatalytic selectivity.Density functional theory(DFT)calculations demonstrated that the desorption of OH*intermediates was the rate-determining step over Cu-NSDC.This study creates a pathway for high-performance ORR single atomic electrocatalysts for fuel cell applications and provides opportunities to convert biowaste materials into commercial opportunities. 展开更多
关键词 ball milling oxygen reduction reaction single-atom catalysis shrimp shell S n-codoped nanocarbon
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部