Quantitative structure-retention relationship (QSRR) model for the estimation of retention indices (RIs) of 39 oxygen-containing compounds containing ketones and esters was established by our newly introduced dist...Quantitative structure-retention relationship (QSRR) model for the estimation of retention indices (RIs) of 39 oxygen-containing compounds containing ketones and esters was established by our newly introduced distance-based atom-type indices DAI. The useful application of the novel DAI indices has been demonstrated by developing accurate predictive equations for gas chromatographic retention indices. The statistical results of the multiple linear regression for the final model are τ=0.9973 and s=8.23. Furthermore, an external test set of 10 oxo-containing compounds can be accurately predicted with the final equation giving the following statistical results: τpred:0.9966 and spred=8.56.展开更多
The DFT-based (density fimctional theory) ab initio quantum mechanical methods have been applied to study the basicity of the nitrogen-containing compounds in petroleum. The results have indicated that there is a di...The DFT-based (density fimctional theory) ab initio quantum mechanical methods have been applied to study the basicity of the nitrogen-containing compounds in petroleum. The results have indicated that there is a distinct relationship between the protonation energy of nitrogen-containing compounds and their basicity. The more negative the protonation energy, the stronger the basicity is. It has been also found that aliphatic amines are more basic than pyridines or aromatic amines, and all these compounds are more basic than pyrroles. The addition of the aromatic rings can influence the basicity of anilines, while the 5- and 6-membered heterocyclic compounds function differently. The solvent properties may affect the basicity of these nitrogen-containing compounds.展开更多
A new approach,named production of aryl oxygen-containing compounds from the catalytic pyrolysis of bagasse lignin(BL) over perovskite oxide,was proposed,A series of LaTixFe1-xO3(LTF-x) samples were prepared by the so...A new approach,named production of aryl oxygen-containing compounds from the catalytic pyrolysis of bagasse lignin(BL) over perovskite oxide,was proposed,A series of LaTixFe1-xO3(LTF-x) samples were prepared by the solid state reaction method.The crystal phase and morphology of LTF-x were characterized by XRD and SEM respectively.Catalytic pyrolysis performance of LTF-x was performed by TG-DTG and the distribution patterns of gaseous,liquid and solid products from BL was investigated using a fixed-bed micro-reactor.The optimal reaction conditions were determined:the pyrolysis temperature was 600℃,the mass ratio of mBL:mLTF-0.2 was 3:1,the veloeity of earrier gas was 100 ml·min-1.The gaseous produets were mainly eomposed of CO2,CO,CH4 and CnHm(n=2-4,m=2 n+2 or m=2 n),The main aryl oxygen-containing compounds in liquid products were phenolics,guaiacols,syringols and phenylates,the rest were benzenes,furans,esters and carboxylic acid.The total contents of aryl oxygencontaining compounds were from 62% up to more than 72% under the action of the perovskite.Moreover,the LTF-0.2 sample had nice regenerability.展开更多
The adsorptive denitrogenation from fuels over three metal-organic frameworks(MIL-96(Al),MIL-53(Al)and MIL-101(Cr))was studied by batch adsorption experiments.Four nitrogen-containing compounds(NCCs)pyridine,pyrrole,q...The adsorptive denitrogenation from fuels over three metal-organic frameworks(MIL-96(Al),MIL-53(Al)and MIL-101(Cr))was studied by batch adsorption experiments.Four nitrogen-containing compounds(NCCs)pyridine,pyrrole,quinoline and indole were used as model NCCs in fuels to study the adsorption mechanism.The physicochemical properties of the adsorbents were characterized by XRD,N2physical adsorption,FT-IR spectrum and Hammett indicator method.The metal-organic frameworks(MOFs),especially the MIL-101(Cr)containing Lewis acid sites as well as high specific surface area,can adsorb large quantities of NCCs from fuels.In addition,the adsorptive capacity over MIL-101(Cr)will be different for NCCs with different basicity.The stronger basicity of the NCC is,the more it can be absorbed over MIL-101(Cr).Furthermore,pore size and shape also affect the adsorption capacity for a given adsorbate,which can be proved by the adsorption over MIL-53(Al)and MIL-96(Al).The pseudo-second-order kinetic model and Langmuir equation can be used to describe kinetics and thermodynamics of the adsorption process,respectively.Finally,the regeneration of the used adsorbent has been conducted successfully by just washing it with ethanol.展开更多
To elucidate the effects of Fe_(2)O_(3) on nitrogen transformation during sludge pyrolysis,thermogravimetry coupled with mass spectrometry(TG-MS)was used to investigate the influences of Fe_(2)O_(3) on the pyrolysis c...To elucidate the effects of Fe_(2)O_(3) on nitrogen transformation during sludge pyrolysis,thermogravimetry coupled with mass spectrometry(TG-MS)was used to investigate the influences of Fe_(2)O_(3) on the pyrolysis characteristics and the release of important gaseous NO_(x) precursors such as HCN and NH_(3) during pyrolysis of three typical amino acids in urban sludge.The results show that after Fe_(2)O_(3) addition,the total weight loss rate of the three amino acids and the initial decomposition temperature of proline are reduced.The release amounts of NH_(3),HCN,CH_(3)CN,and HNCO from these three representative amino acids—glumatic,arginine,and proline,decrease in the order of arginine,glutamic,proline.The generation of Fe-N complexes,reduces the generation of NH_(3),HCN,CH_(3)CN,and HNCO while the catalysis effects of Fe_(2)O_(3) on the formation of H and H2 play a promoting role in the generation of NH_(3),HCN,CH_(3)CN,and HNCO.The results would provide an experimental and theoretical basis for subsequent research on the NOx precursor formation mechanisms during pyrolysis or combustion of Fe-containing sludge or sludge with additives containing Fe.展开更多
To realize the resource and high-value utilization,a new approach,named bagasse lignin(BL) used to produce aryl oxygen-containing compounds by catalytic pyrolysis over perovskite,was proposed,LaTi0.2Fe0.8O3(LTF) sampl...To realize the resource and high-value utilization,a new approach,named bagasse lignin(BL) used to produce aryl oxygen-containing compounds by catalytic pyrolysis over perovskite,was proposed,LaTi0.2Fe0.8O3(LTF) samples prepared by the sol-gel method(SG) and the solid-state reaction method(SS)were characterized.The catalytic action on BL pyrolysis was performed by the test of TG-DTG and the evaluation of the fixed bed micro-reactor,the components and contents of the products were determined.The results show that LTF samples have cubic perovskite phase,LTF prepared by SG(LTF-SG) is porous with larger specific surface area than LTF prepared by SS(LTF-SS).During the pyrolysis of BL,the addition of LTF lowers the pyrolysis temperature and the activation energy,the contents of CO2 and CO in gaseous products reduce by 4.6%-8.0% and 30.7%-34.3%,respectively,the total content of aryl oxygencontaining compounds(including phenolics,guaiacols,syringols and phenylates) in liquid products increases from 62 wt% to more than 72 wt%,and LTF-SG shows better catalytic performance.LTF samples have nice phase and catalytic stabilities for BL pyrolysis after five successive redox cycles.展开更多
Paired electrolysis in anion-exchange membrane(AEM)electrolyzers toward the cathodic nitrate reduction reaction(NO_(3)RR)and anodic benzylamine oxidation reaction(BOR)could generate high value-added N-containing compo...Paired electrolysis in anion-exchange membrane(AEM)electrolyzers toward the cathodic nitrate reduction reaction(NO_(3)RR)and anodic benzylamine oxidation reaction(BOR)could generate high value-added N-containing compounds simultaneously.The key challenge is to develop bifunctional electrocatalysts with a wide potential window,which can achieve highly efficient conversion of anode and cathode reactants.Herein,Ni_(3)Se_(4)with Se vacancies was prepared and employed as the cathode and anode of AEM electrolyzers for NO_(3)RR and BOR.^(15)N isotope-labeling online differential electrochemical mass spectrometry(DEMS)proved that ammonium was reduced from nitrates and revealed the reaction pathway of NO_(3)RR.The density functional theory calculation clarified that Se vacancies regulate d-band centers,and then further modulate the adsorption energy of adsorbed hydrogen,NO_(3)^(-)and intermediates on the Ni_(3)Se_(4)-60s surface in NO_(3)RR,so as to optimize the hydrogenation of NO_(3)^(-)into ammonia.Moreover,during the BOR,the Se vacancy can promote the adsorption of OH^(-),which is easier to form the active species of Ni OOH.The technical and economic evaluation exhibited that the cost of paired electrolysis is 1.21 times lower and the profit is 1.42 times higher than that of the unpaired electrolysis,which shows the economic attraction of paired electrolysis.This work delivers the guidance for the design of efficient catalysts for paired electrolysis in AEM electrolyzer toward the sustainable synthesis of value-added chemicals.展开更多
In this editorial,we discuss the findings reported by Wang et al in the latest issue of the World Journal of Gastrointestinal Oncology.Various research methodologies,including microbiome analysis,assert that the Tzu-C...In this editorial,we discuss the findings reported by Wang et al in the latest issue of the World Journal of Gastrointestinal Oncology.Various research methodologies,including microbiome analysis,assert that the Tzu-Chi Cancer-Antagonizing and Life-Protecting II Decoction of Chinese herbal compounds mitigates inflammatory responses by inhibiting the NF-κB signaling pathway.This action helps maintain the dynamic equilibrium of the intestinal microecology and lessens chemotherapy-induced gastrointestinal damage.The efficacy of these compounds is intimately linked to the composition of intestinal microbes.These compounds regulate intestinal microecology by virtue of their specific compatibility and effectiveness,thereby enhancing the overall therapeutic outcomes of cancer chemotherapy.Nonetheless,the exact mechanisms underlying these effects warrant further investigation.Multi-omics technologies offer a systematic approach to elucidate the mechanisms and effectiveness of Chinese herbal compounds in vivo.This manuscript reviews the application of multi-omics technologies to Chinese herbal compounds and explores their potential role in modulating the gastrointestinal microenvironment following cancer chemotherapy,thus providing a theoretical foundation for their continued use in adjunct cancer treatment.展开更多
Many nitrogen-containing aromatic compounds (NACs), such as nitrobenzene (NB), 4-nitrophenol (4-NP), aniline (AN), and 2,4-dinitrophenol (2,4-DNP), are environmentally hazardous, and their removal from conta...Many nitrogen-containing aromatic compounds (NACs), such as nitrobenzene (NB), 4-nitrophenol (4-NP), aniline (AN), and 2,4-dinitrophenol (2,4-DNP), are environmentally hazardous, and their removal from contaminated water is one of the main challenges facing wastewater treatment plants. In this study, synthetic wastewater containing NB, 4-NP, 2,4-DNP, and AN at concentrations ranging from 50 to 180 mg/L was fed into a sequencing batch reactor (SBR). Analyses of the SBR system indicated that it simultaneously removed more than 99% of the NACs at loading rates of 0.36 kg NB/(m^3·d), 0.3 kg 4-NP/(m^3·d), 0.25 kg AN/(m^3·d), and 0.1 kg 2,4-DNP/(m^3·d). Bacterial groups of Bacteriodetes, Candidate division TM7, α-Proteobacteria, and β-Proteobacteria were dominant in the clone libraries of 16S rRNA genes retrieved from the microbial communities in the SBR system. "Cycle tests" designed to alter feeding and aeration parameters of the SBR system demonstrated that the resident microbial biome of the SBR system responded rapidly to changing conditions. Consumption of O2 was concomitant with the apparent mineralization of NACs. Aromatic ring-cleaving dioxygenase activities suggested that (1) AN and NB were degraded via catechol 2,3-dioxygenase; (2) 4-NP was degraded via 1,2,4-benzentriol 1,2-dioxygenase; and (3) 2,4-DNP was degraded via an unresolved pathway.展开更多
New descriptors were constructed and structures of some oxygen-containing organic compounds were parameterized. The multiple linear regression(MLR) and partial least squares regression(PLS) methods were employed t...New descriptors were constructed and structures of some oxygen-containing organic compounds were parameterized. The multiple linear regression(MLR) and partial least squares regression(PLS) methods were employed to build two relationship models between the structures and octanol/water partition coefficients(LogP) of the compounds. The modeling correlation coefficients(R) were 0.976 and 0.922, and the "leave one out" cross validation correlation coefficients(R(CV)) were 0.973 and 0.909, respectively. The results showed that the structural descriptors could well characterize the molecular structures of the compounds; the stability and predictive power of the models were good.展开更多
In an earlier paper, the authors reported the solid and liquid phase equilibria in mix-tures of tetrachloromethane with oxygen-containing compounds. This note reports the solidand liquld phase equilibria for mixtures ...In an earlier paper, the authors reported the solid and liquid phase equilibria in mix-tures of tetrachloromethane with oxygen-containing compounds. This note reports the solidand liquld phase equilibria for mixtures of tetrachloromethane with nitrogen-containing com-pounds. The solid intermolecular compound forms in mixture of tetrachloromethane withbenzene, the intermolecular bonding in compound has been assumed to be charge transfer.The intermolecula compounds form easily in mixtures in which the electron density of thebenzene ring has been increased in the presence of electron-excluding substituents in展开更多
Evaluating the hydrocarbon generation potential of highly mature organic matter is a key and critically challenging area of research in petroleum geochemistry. To explore this issue, we used negative ion electrospray ...Evaluating the hydrocarbon generation potential of highly mature organic matter is a key and critically challenging area of research in petroleum geochemistry. To explore this issue, we used negative ion electrospray ionization-Fourier transform-ion cyclotron resonance-mass spectrometry to investigate the molecular evolution of N-containing compounds in Carboniferous-lower Permian source rocks with a range of maturities in the northwestern Junggar Basin, China. The N1compounds formed from on-fluorescent chlorophyll catabolites(NCCs), which record the characteristics of the residual soluble organic matter. These components remain in the source rocks after hydrocarbon generation and expulsion, and enable evaluation of the hydrocarbon generation potential. The newly defined indexes of molecular evolution, which are the polymerization index P1([DBE 18+DBE 15]/[DBE 12+DBE 9]_N1) and alkylation index R1(RC_(6–35)/RC_(0–5)), combined with the vitrinite reflectance(VR_(o)) and paleo-salinity index(β-carotane/n Cmax), can identify the factors that control the evolution of highly mature organic matter. The main factor for source rocks deposited in a weakly saline environment is the maturity, but for a highly saline environment both the maturity and salinity are key factors. The high salinity inhibits the molecular polymerization of organic matter and extends the oil generation peak. Given the differences in the bio-precursors in saline source rocks, we propose a new model for hydrocarbon generation that can be used to determine the oil generation potential of highly mature organic matter.展开更多
A ZA 27 alloy reinforced with Mn containing intermetallic compounds was prepared and its tribological behaviors were investigated. By adding Mn, RE, Ti and B into ZA 27 alloy, the test alloy (ZMJ) was fabricated by sa...A ZA 27 alloy reinforced with Mn containing intermetallic compounds was prepared and its tribological behaviors were investigated. By adding Mn, RE, Ti and B into ZA 27 alloy, the test alloy (ZMJ) was fabricated by sand casting. Microstructural analysis shows that considerable amount of Mn containing intermetallic compounds such as Al 5MnZn, Al 9(MnZn) 2 and Al 65 Mn(RE) 6Ti 4Zn 36 are formed. Compared to ZA 27, ZMJ shows better wear resistance, lower friction coefficient and lower temperature rise of worn surface under lubricated sliding condition. ZMJ also shows the lowest steady friction coefficient under dry friction condition. The wear resistance improvement of ZMJ is mainly attributed to the high hardness and good dispersion of these Mn containing intermetallic compounds. It is indicated that the intermetallic compounds play a dominant role in reducing the sever adhesive and abrasive wear of the ZA 27 alloy.展开更多
To provide new insights into the development and utilization of Douchi artificial starters,three common strains(Aspergillus oryzae,Mucor racemosus,and Rhizopus oligosporus)were used to study their influence on the fer...To provide new insights into the development and utilization of Douchi artificial starters,three common strains(Aspergillus oryzae,Mucor racemosus,and Rhizopus oligosporus)were used to study their influence on the fermentation of Douchi.The results showed that the biogenic amine contents of the three types of Douchi were all within the safe range and far lower than those of traditional fermented Douchi.Aspergillus-type Douchi produced more free amino acids than the other two types of Douchi,and its umami taste was more prominent in sensory evaluation(P<0.01),while Mucor-type and Rhizopus-type Douchi produced more esters and pyrazines,making the aroma,sauce,and Douchi flavor more abundant.According to the Pearson and PLS analyses results,sweetness was significantly negatively correlated with phenylalanine,cysteine,and acetic acid(P<0.05),bitterness was significantly negatively correlated with malic acid(P<0.05),the sour taste was significantly positively correlated with citric acid and most free amino acids(P<0.05),while astringency was significantly negatively correlated with glucose(P<0.001).Thirteen volatile compounds such as furfuryl alcohol,phenethyl alcohol,and benzaldehyde caused the flavor difference of three types of Douchi.This study provides theoretical basis for the selection of starting strains for commercial Douchi production.展开更多
The significant demand for high quality food has motivated us to adopt appropriate processing methods to improve the food nutritional quality and flavors.In this study,the effects of five drying methods,namely,pulsed ...The significant demand for high quality food has motivated us to adopt appropriate processing methods to improve the food nutritional quality and flavors.In this study,the effects of five drying methods,namely,pulsed vacuum drying(PVD),freeze drying(FD),infrared drying(IRD),hot-air drying(HAD)and sun drying(SD)on free amino acids(FAAs),α-dicarbonyl compounds(α-DCs)and volatile compounds(VOCs)in rape bee pollen(RBP)were determined.The results showed that FD significantly released the essential amino acids(EAAs)compared with fresh samples while SD caused the highest loss.Glucosone was the dominantα-DCs in RBP and the highest loss was observed after PVD.Aldehydes were the dominant volatiles of RBP and SD samples contained more new volatile substances(especially aldehydes)than the other four drying methods.Comprehensively,FD and PVD would be potential methods to effectively reduce the quality deterioration of RBP in the drying process.展开更多
The petroleum industry is a significant source of anthropogenic volatile organic compounds(VOCs),but up to now,its exact impact on urban VOCs and ozone(O_(3))remains unclear.This study conducted year-long VOC ob-serva...The petroleum industry is a significant source of anthropogenic volatile organic compounds(VOCs),but up to now,its exact impact on urban VOCs and ozone(O_(3))remains unclear.This study conducted year-long VOC ob-servations in Dongying,China,a petroleum industrial region.The VOCs from the petroleum industry(oil and gas volatilization and petrochemical production)were identified by employing the positive matrix factorization model,and their contribution to O_(3) formation was quantitatively evaluated using an observation-based chemical box model.The observed annual average concentration of VOCs was 68.6±63.5 ppbv,with a maximum daily av-erage of 335.3 ppbv.The petroleum industry accounted for 66.5%of total VOCs,contributing 54.9%from oil and gas evaporation and 11.6%from petrochemical production.Model results indicated that VOCs from the petroleum industry contributed to 31%of net O_(3) production,with 21.3%and 34.2%contributions to HO_(2)+NO and RO_(2)+NO pathways,respectively.The larger impact on the RO_(2) pathway is primarily due to the fact that OH+VOCs ac-count for 86.9%of the primary source of RO_(2).This study highlights the critical role of controlling VOCs from the petroleum industry in urban O_(3) pollution,especially those from previously overlooked low-reactivity alkanes.展开更多
In order to better understand the specific substituent effects on the electrochemical oxidation process of β-O-4 bond, a series of methoxyphenyl type β-O-4 dimer model compounds with different localized methoxyl gro...In order to better understand the specific substituent effects on the electrochemical oxidation process of β-O-4 bond, a series of methoxyphenyl type β-O-4 dimer model compounds with different localized methoxyl groups, including 2-(2-methoxyphenoxy)-1-phenylethanone, 2-(2-methoxyphenoxy)-1-phenylethanol, 2-(2-methoxyphenoxy)-1-(4-methoxyphenyl)ethanone, 2-(2-methoxyphenoxy)-1-(4-methoxyphenyl)ethanol, 2-(2,6-dimethoxyphenoxy)-1-(4-methoxyphenyl)ethanone, 2-(2,6-dimethoxyphenoxy)-1-(4-methoxyphenyl)ethanol have been selected and their electrochemical properties have been studied experimentally by cyclic voltammetry, and FT-IR spectroelectrochemistry. Combining with electrolysis products distribution analysis and density functional theory calculations, oxidation mechanisms of all six model dimers have been explored. In particular, a total effect from substituents of both para-methoxy(on the aryl ring closing to Cα) and Cα-OH on the oxidation mechanisms has been clearly observed, showing a significant selectivity on the Cα-Cβbond cleavage induced by electrochemical oxidations.展开更多
Pathogenic microorganisms produce numerous metabolites,including volatile organic compounds(VOCs).Monitoring these metabolites in biological matrices(e.g.,urine,blood,or breath)can reveal the presence of specific micr...Pathogenic microorganisms produce numerous metabolites,including volatile organic compounds(VOCs).Monitoring these metabolites in biological matrices(e.g.,urine,blood,or breath)can reveal the presence of specific microorganisms,enabling the early diagnosis of infections and the timely implementation of tar-geted therapy.However,complex matrices only contain trace levels of VOCs,and their constituent com-ponents can hinder determination of these compounds.Therefore,modern analytical techniques enabling the non-invasive identification and precise quantification of microbial VOCs are needed.In this paper,we discuss bacterial VOC analysis under in vitro conditions,in animal models and disease diagnosis in humans,including techniques for offline and online analysis in clinical settings.We also consider the advantages and limitations of novel microextraction techniques used to prepare biological samples for VOC analysis,in addition to reviewing current clinical studies on bacterial volatilomes that address inter-species in-teractions,the kinetics of VOC metabolism,and species-and drug-resistance specificity.展开更多
Developing Cu single-atom catalysts(SACs)with well-defined active sites is highly desirable for producing CH4 in the electrochemical CO_(2) reduction reaction and understanding the structure-property relationship.Here...Developing Cu single-atom catalysts(SACs)with well-defined active sites is highly desirable for producing CH4 in the electrochemical CO_(2) reduction reaction and understanding the structure-property relationship.Herein,a new graphdiyne analogue with uniformly distributed N_(2)-bidentate(note that N_(2)-bidentate site=N^N-bidentate site;N_(2)≠dinitrogen gas in this work)sites are synthesized.Due to the strong interaction between Cu and the N_(2)-bidentate site,a Cu SAC with isolated undercoordinated Cu-N_(2) sites(Cu1.0/N_(2)-GDY)is obtained,with the Cu loading of 1.0 wt%.Cu1.0/N_(2)-GDY exhibits the highest Faradaic efficiency(FE)of 80.6% for CH_(4) in electrocatalytic reduction of CO_(2) at-0.96 V vs.RHE,and the partial current density of CH_(4) is 160 mA cm^(-2).The selectivity for CH_(4) is maintained above 70% when the total current density is 100 to 300 mA cm^(-2).More remarkably,the Cu1.0/N_(2)-GDY achieves a mass activity of 53.2 A/mgCu toward CH4 under-1.18 V vs.RHE.In situ electrochemical spectroscopic studies reveal that undercoordinated Cu-N_(2) sites are more favorable in generating key ^(*)COOH and ^(*)CHO intermediate than Cu nanoparticle counterparts.This work provides an effective pathway to produce SACs with undercoordinated Metal-N_(2) sites toward efficient electrocatalysis.展开更多
文摘Quantitative structure-retention relationship (QSRR) model for the estimation of retention indices (RIs) of 39 oxygen-containing compounds containing ketones and esters was established by our newly introduced distance-based atom-type indices DAI. The useful application of the novel DAI indices has been demonstrated by developing accurate predictive equations for gas chromatographic retention indices. The statistical results of the multiple linear regression for the final model are τ=0.9973 and s=8.23. Furthermore, an external test set of 10 oxo-containing compounds can be accurately predicted with the final equation giving the following statistical results: τpred:0.9966 and spred=8.56.
基金supported by the"973"project envisaged in the State Key Basic R&D Program(2006CB202505).
文摘The DFT-based (density fimctional theory) ab initio quantum mechanical methods have been applied to study the basicity of the nitrogen-containing compounds in petroleum. The results have indicated that there is a distinct relationship between the protonation energy of nitrogen-containing compounds and their basicity. The more negative the protonation energy, the stronger the basicity is. It has been also found that aliphatic amines are more basic than pyridines or aromatic amines, and all these compounds are more basic than pyrroles. The addition of the aromatic rings can influence the basicity of anilines, while the 5- and 6-membered heterocyclic compounds function differently. The solvent properties may affect the basicity of these nitrogen-containing compounds.
基金Supported by the National Natural Science Foundation of China,China(51674089)Heilongjiang Provincial Science Fund for Distinguished Youth Scholar(JC2018002)+2 种基金Heilongjiang Postdoctoral Scientific Research Development Fund of China(LBH-Q16037)the Youth Fund of Northeast Petroleum University(2018QNL-17)Postgraduate Innovative Research Projects of Northeast Petroleum University(YJSCX2017-014NEPU)
文摘A new approach,named production of aryl oxygen-containing compounds from the catalytic pyrolysis of bagasse lignin(BL) over perovskite oxide,was proposed,A series of LaTixFe1-xO3(LTF-x) samples were prepared by the solid state reaction method.The crystal phase and morphology of LTF-x were characterized by XRD and SEM respectively.Catalytic pyrolysis performance of LTF-x was performed by TG-DTG and the distribution patterns of gaseous,liquid and solid products from BL was investigated using a fixed-bed micro-reactor.The optimal reaction conditions were determined:the pyrolysis temperature was 600℃,the mass ratio of mBL:mLTF-0.2 was 3:1,the veloeity of earrier gas was 100 ml·min-1.The gaseous produets were mainly eomposed of CO2,CO,CH4 and CnHm(n=2-4,m=2 n+2 or m=2 n),The main aryl oxygen-containing compounds in liquid products were phenolics,guaiacols,syringols and phenylates,the rest were benzenes,furans,esters and carboxylic acid.The total contents of aryl oxygencontaining compounds were from 62% up to more than 72% under the action of the perovskite.Moreover,the LTF-0.2 sample had nice regenerability.
基金supported by the Program for New Century Excellent Talents in University (NCET-04-0270)National Basic Research Program of China (2011CB201301)
文摘The adsorptive denitrogenation from fuels over three metal-organic frameworks(MIL-96(Al),MIL-53(Al)and MIL-101(Cr))was studied by batch adsorption experiments.Four nitrogen-containing compounds(NCCs)pyridine,pyrrole,quinoline and indole were used as model NCCs in fuels to study the adsorption mechanism.The physicochemical properties of the adsorbents were characterized by XRD,N2physical adsorption,FT-IR spectrum and Hammett indicator method.The metal-organic frameworks(MOFs),especially the MIL-101(Cr)containing Lewis acid sites as well as high specific surface area,can adsorb large quantities of NCCs from fuels.In addition,the adsorptive capacity over MIL-101(Cr)will be different for NCCs with different basicity.The stronger basicity of the NCC is,the more it can be absorbed over MIL-101(Cr).Furthermore,pore size and shape also affect the adsorption capacity for a given adsorbate,which can be proved by the adsorption over MIL-53(Al)and MIL-96(Al).The pseudo-second-order kinetic model and Langmuir equation can be used to describe kinetics and thermodynamics of the adsorption process,respectively.Finally,the regeneration of the used adsorbent has been conducted successfully by just washing it with ethanol.
文摘To elucidate the effects of Fe_(2)O_(3) on nitrogen transformation during sludge pyrolysis,thermogravimetry coupled with mass spectrometry(TG-MS)was used to investigate the influences of Fe_(2)O_(3) on the pyrolysis characteristics and the release of important gaseous NO_(x) precursors such as HCN and NH_(3) during pyrolysis of three typical amino acids in urban sludge.The results show that after Fe_(2)O_(3) addition,the total weight loss rate of the three amino acids and the initial decomposition temperature of proline are reduced.The release amounts of NH_(3),HCN,CH_(3)CN,and HNCO from these three representative amino acids—glumatic,arginine,and proline,decrease in the order of arginine,glutamic,proline.The generation of Fe-N complexes,reduces the generation of NH_(3),HCN,CH_(3)CN,and HNCO while the catalysis effects of Fe_(2)O_(3) on the formation of H and H2 play a promoting role in the generation of NH_(3),HCN,CH_(3)CN,and HNCO.The results would provide an experimental and theoretical basis for subsequent research on the NOx precursor formation mechanisms during pyrolysis or combustion of Fe-containing sludge or sludge with additives containing Fe.
基金Project supported by National Natural Science Foundation of China(51674089)Heilongjiang Provincial Science Fund for Distinguished Youth Scholar(JC2018002)+2 种基金Postdoctoral Scientific Research Development Fund of Heilongjiang Province(LBH-Q16037)Postgraduate Innovative Research Project of Northeast Petroleum University(YJSCX2017-014NEPU)Youth Fund of Northeast Petroleum University(2018QNL-17)
文摘To realize the resource and high-value utilization,a new approach,named bagasse lignin(BL) used to produce aryl oxygen-containing compounds by catalytic pyrolysis over perovskite,was proposed,LaTi0.2Fe0.8O3(LTF) samples prepared by the sol-gel method(SG) and the solid-state reaction method(SS)were characterized.The catalytic action on BL pyrolysis was performed by the test of TG-DTG and the evaluation of the fixed bed micro-reactor,the components and contents of the products were determined.The results show that LTF samples have cubic perovskite phase,LTF prepared by SG(LTF-SG) is porous with larger specific surface area than LTF prepared by SS(LTF-SS).During the pyrolysis of BL,the addition of LTF lowers the pyrolysis temperature and the activation energy,the contents of CO2 and CO in gaseous products reduce by 4.6%-8.0% and 30.7%-34.3%,respectively,the total content of aryl oxygencontaining compounds(including phenolics,guaiacols,syringols and phenylates) in liquid products increases from 62 wt% to more than 72 wt%,and LTF-SG shows better catalytic performance.LTF samples have nice phase and catalytic stabilities for BL pyrolysis after five successive redox cycles.
基金supported by the National Natural Science Foundation of China(22162025,22168040)Regional Innovation Capability Leading Program of Shaanxi(2022QFY07-03,2022QFY07-06)Shaanxi Province Training Program of Innovation and Entrepreneurship for Undergraduates(S202210719108,S202110719107,S202010719121)
文摘Paired electrolysis in anion-exchange membrane(AEM)electrolyzers toward the cathodic nitrate reduction reaction(NO_(3)RR)and anodic benzylamine oxidation reaction(BOR)could generate high value-added N-containing compounds simultaneously.The key challenge is to develop bifunctional electrocatalysts with a wide potential window,which can achieve highly efficient conversion of anode and cathode reactants.Herein,Ni_(3)Se_(4)with Se vacancies was prepared and employed as the cathode and anode of AEM electrolyzers for NO_(3)RR and BOR.^(15)N isotope-labeling online differential electrochemical mass spectrometry(DEMS)proved that ammonium was reduced from nitrates and revealed the reaction pathway of NO_(3)RR.The density functional theory calculation clarified that Se vacancies regulate d-band centers,and then further modulate the adsorption energy of adsorbed hydrogen,NO_(3)^(-)and intermediates on the Ni_(3)Se_(4)-60s surface in NO_(3)RR,so as to optimize the hydrogenation of NO_(3)^(-)into ammonia.Moreover,during the BOR,the Se vacancy can promote the adsorption of OH^(-),which is easier to form the active species of Ni OOH.The technical and economic evaluation exhibited that the cost of paired electrolysis is 1.21 times lower and the profit is 1.42 times higher than that of the unpaired electrolysis,which shows the economic attraction of paired electrolysis.This work delivers the guidance for the design of efficient catalysts for paired electrolysis in AEM electrolyzer toward the sustainable synthesis of value-added chemicals.
基金Supported by 2023 Government-funded Project of the Outstanding Talents Training Program in Clinical Medicine,No.ZF2023165Key Research and Development Projects of Hebei Province,No.18277731DNatural Science Foundation of Hebei Province,No.H202423105.
文摘In this editorial,we discuss the findings reported by Wang et al in the latest issue of the World Journal of Gastrointestinal Oncology.Various research methodologies,including microbiome analysis,assert that the Tzu-Chi Cancer-Antagonizing and Life-Protecting II Decoction of Chinese herbal compounds mitigates inflammatory responses by inhibiting the NF-κB signaling pathway.This action helps maintain the dynamic equilibrium of the intestinal microecology and lessens chemotherapy-induced gastrointestinal damage.The efficacy of these compounds is intimately linked to the composition of intestinal microbes.These compounds regulate intestinal microecology by virtue of their specific compatibility and effectiveness,thereby enhancing the overall therapeutic outcomes of cancer chemotherapy.Nonetheless,the exact mechanisms underlying these effects warrant further investigation.Multi-omics technologies offer a systematic approach to elucidate the mechanisms and effectiveness of Chinese herbal compounds in vivo.This manuscript reviews the application of multi-omics technologies to Chinese herbal compounds and explores their potential role in modulating the gastrointestinal microenvironment following cancer chemotherapy,thus providing a theoretical foundation for their continued use in adjunct cancer treatment.
基金Project supported by the Pilot Project of Knowledge Innovation Program of Chinese Academy of Sciences (No. KZCX2-YW-G-009)the National Natural Science Foundation of China (No. 20577067, 30230010).
文摘Many nitrogen-containing aromatic compounds (NACs), such as nitrobenzene (NB), 4-nitrophenol (4-NP), aniline (AN), and 2,4-dinitrophenol (2,4-DNP), are environmentally hazardous, and their removal from contaminated water is one of the main challenges facing wastewater treatment plants. In this study, synthetic wastewater containing NB, 4-NP, 2,4-DNP, and AN at concentrations ranging from 50 to 180 mg/L was fed into a sequencing batch reactor (SBR). Analyses of the SBR system indicated that it simultaneously removed more than 99% of the NACs at loading rates of 0.36 kg NB/(m^3·d), 0.3 kg 4-NP/(m^3·d), 0.25 kg AN/(m^3·d), and 0.1 kg 2,4-DNP/(m^3·d). Bacterial groups of Bacteriodetes, Candidate division TM7, α-Proteobacteria, and β-Proteobacteria were dominant in the clone libraries of 16S rRNA genes retrieved from the microbial communities in the SBR system. "Cycle tests" designed to alter feeding and aeration parameters of the SBR system demonstrated that the resident microbial biome of the SBR system responded rapidly to changing conditions. Consumption of O2 was concomitant with the apparent mineralization of NACs. Aromatic ring-cleaving dioxygenase activities suggested that (1) AN and NB were degraded via catechol 2,3-dioxygenase; (2) 4-NP was degraded via 1,2,4-benzentriol 1,2-dioxygenase; and (3) 2,4-DNP was degraded via an unresolved pathway.
基金supported by the Youth Foundation of Education Bureau,Sichuan Province(13ZB0003)
文摘New descriptors were constructed and structures of some oxygen-containing organic compounds were parameterized. The multiple linear regression(MLR) and partial least squares regression(PLS) methods were employed to build two relationship models between the structures and octanol/water partition coefficients(LogP) of the compounds. The modeling correlation coefficients(R) were 0.976 and 0.922, and the "leave one out" cross validation correlation coefficients(R(CV)) were 0.973 and 0.909, respectively. The results showed that the structural descriptors could well characterize the molecular structures of the compounds; the stability and predictive power of the models were good.
文摘In an earlier paper, the authors reported the solid and liquid phase equilibria in mix-tures of tetrachloromethane with oxygen-containing compounds. This note reports the solidand liquld phase equilibria for mixtures of tetrachloromethane with nitrogen-containing com-pounds. The solid intermolecular compound forms in mixture of tetrachloromethane withbenzene, the intermolecular bonding in compound has been assumed to be charge transfer.The intermolecula compounds form easily in mixtures in which the electron density of thebenzene ring has been increased in the presence of electron-excluding substituents in
基金supported by the National Natural Science Foundation of China(Grant Nos.42230808 and 42102148)China Postdoctoral Science Foundation(Grant No.2021M691497)。
文摘Evaluating the hydrocarbon generation potential of highly mature organic matter is a key and critically challenging area of research in petroleum geochemistry. To explore this issue, we used negative ion electrospray ionization-Fourier transform-ion cyclotron resonance-mass spectrometry to investigate the molecular evolution of N-containing compounds in Carboniferous-lower Permian source rocks with a range of maturities in the northwestern Junggar Basin, China. The N1compounds formed from on-fluorescent chlorophyll catabolites(NCCs), which record the characteristics of the residual soluble organic matter. These components remain in the source rocks after hydrocarbon generation and expulsion, and enable evaluation of the hydrocarbon generation potential. The newly defined indexes of molecular evolution, which are the polymerization index P1([DBE 18+DBE 15]/[DBE 12+DBE 9]_N1) and alkylation index R1(RC_(6–35)/RC_(0–5)), combined with the vitrinite reflectance(VR_(o)) and paleo-salinity index(β-carotane/n Cmax), can identify the factors that control the evolution of highly mature organic matter. The main factor for source rocks deposited in a weakly saline environment is the maturity, but for a highly saline environment both the maturity and salinity are key factors. The high salinity inhibits the molecular polymerization of organic matter and extends the oil generation peak. Given the differences in the bio-precursors in saline source rocks, we propose a new model for hydrocarbon generation that can be used to determine the oil generation potential of highly mature organic matter.
文摘A ZA 27 alloy reinforced with Mn containing intermetallic compounds was prepared and its tribological behaviors were investigated. By adding Mn, RE, Ti and B into ZA 27 alloy, the test alloy (ZMJ) was fabricated by sand casting. Microstructural analysis shows that considerable amount of Mn containing intermetallic compounds such as Al 5MnZn, Al 9(MnZn) 2 and Al 65 Mn(RE) 6Ti 4Zn 36 are formed. Compared to ZA 27, ZMJ shows better wear resistance, lower friction coefficient and lower temperature rise of worn surface under lubricated sliding condition. ZMJ also shows the lowest steady friction coefficient under dry friction condition. The wear resistance improvement of ZMJ is mainly attributed to the high hardness and good dispersion of these Mn containing intermetallic compounds. It is indicated that the intermetallic compounds play a dominant role in reducing the sever adhesive and abrasive wear of the ZA 27 alloy.
基金supported by Special key project of technological innovation and application development in Yongchuan District,Chongqing(2021yc-cxfz20002)the special funds of central government for guiding local science and technology developmentthe funds for the platform projects of professional technology innovation(CSTC2018ZYCXPT0006).
文摘To provide new insights into the development and utilization of Douchi artificial starters,three common strains(Aspergillus oryzae,Mucor racemosus,and Rhizopus oligosporus)were used to study their influence on the fermentation of Douchi.The results showed that the biogenic amine contents of the three types of Douchi were all within the safe range and far lower than those of traditional fermented Douchi.Aspergillus-type Douchi produced more free amino acids than the other two types of Douchi,and its umami taste was more prominent in sensory evaluation(P<0.01),while Mucor-type and Rhizopus-type Douchi produced more esters and pyrazines,making the aroma,sauce,and Douchi flavor more abundant.According to the Pearson and PLS analyses results,sweetness was significantly negatively correlated with phenylalanine,cysteine,and acetic acid(P<0.05),bitterness was significantly negatively correlated with malic acid(P<0.05),the sour taste was significantly positively correlated with citric acid and most free amino acids(P<0.05),while astringency was significantly negatively correlated with glucose(P<0.001).Thirteen volatile compounds such as furfuryl alcohol,phenethyl alcohol,and benzaldehyde caused the flavor difference of three types of Douchi.This study provides theoretical basis for the selection of starting strains for commercial Douchi production.
基金supported by National Natural Science Foundation of China(Nos.31871861 and 31501548)The Apicultural Industry Technology System(NCYTI-43-KXJ17)The Science and Technology Innovation Project of Chinese Academy of Agricultural Sciences(CAAS-ASTIP-2015-IAR)。
文摘The significant demand for high quality food has motivated us to adopt appropriate processing methods to improve the food nutritional quality and flavors.In this study,the effects of five drying methods,namely,pulsed vacuum drying(PVD),freeze drying(FD),infrared drying(IRD),hot-air drying(HAD)and sun drying(SD)on free amino acids(FAAs),α-dicarbonyl compounds(α-DCs)and volatile compounds(VOCs)in rape bee pollen(RBP)were determined.The results showed that FD significantly released the essential amino acids(EAAs)compared with fresh samples while SD caused the highest loss.Glucosone was the dominantα-DCs in RBP and the highest loss was observed after PVD.Aldehydes were the dominant volatiles of RBP and SD samples contained more new volatile substances(especially aldehydes)than the other four drying methods.Comprehensively,FD and PVD would be potential methods to effectively reduce the quality deterioration of RBP in the drying process.
基金funded by the National Natural Science Foundation of China[grant number 42075094]the China Postdoctoral Science Foundation[grant number 2021M691921]+1 种基金the Ministry of Ecology and Environment of the People’s Republic of China[grant number DQGG202121]the Dongying Ecological and Environmental Bureau[grant number 2021DFKY-0779]。
文摘The petroleum industry is a significant source of anthropogenic volatile organic compounds(VOCs),but up to now,its exact impact on urban VOCs and ozone(O_(3))remains unclear.This study conducted year-long VOC ob-servations in Dongying,China,a petroleum industrial region.The VOCs from the petroleum industry(oil and gas volatilization and petrochemical production)were identified by employing the positive matrix factorization model,and their contribution to O_(3) formation was quantitatively evaluated using an observation-based chemical box model.The observed annual average concentration of VOCs was 68.6±63.5 ppbv,with a maximum daily av-erage of 335.3 ppbv.The petroleum industry accounted for 66.5%of total VOCs,contributing 54.9%from oil and gas evaporation and 11.6%from petrochemical production.Model results indicated that VOCs from the petroleum industry contributed to 31%of net O_(3) production,with 21.3%and 34.2%contributions to HO_(2)+NO and RO_(2)+NO pathways,respectively.The larger impact on the RO_(2) pathway is primarily due to the fact that OH+VOCs ac-count for 86.9%of the primary source of RO_(2).This study highlights the critical role of controlling VOCs from the petroleum industry in urban O_(3) pollution,especially those from previously overlooked low-reactivity alkanes.
基金The authors gratefully acknowledge the financial support of the Natural Science Foundation of China,China(Grant No.21975082 and 21736003)the Guangdong Basic and Applied Basic Research Foundation(Grant Number:2019A1515011472 and 2022A1515011341)the Science and Technology Program of Guangzhou(Grant Number:202102080479).
文摘In order to better understand the specific substituent effects on the electrochemical oxidation process of β-O-4 bond, a series of methoxyphenyl type β-O-4 dimer model compounds with different localized methoxyl groups, including 2-(2-methoxyphenoxy)-1-phenylethanone, 2-(2-methoxyphenoxy)-1-phenylethanol, 2-(2-methoxyphenoxy)-1-(4-methoxyphenyl)ethanone, 2-(2-methoxyphenoxy)-1-(4-methoxyphenyl)ethanol, 2-(2,6-dimethoxyphenoxy)-1-(4-methoxyphenyl)ethanone, 2-(2,6-dimethoxyphenoxy)-1-(4-methoxyphenyl)ethanol have been selected and their electrochemical properties have been studied experimentally by cyclic voltammetry, and FT-IR spectroelectrochemistry. Combining with electrolysis products distribution analysis and density functional theory calculations, oxidation mechanisms of all six model dimers have been explored. In particular, a total effect from substituents of both para-methoxy(on the aryl ring closing to Cα) and Cα-OH on the oxidation mechanisms has been clearly observed, showing a significant selectivity on the Cα-Cβbond cleavage induced by electrochemical oxidations.
基金funded by the National Science Centre,Poland(Project No.:2017/26/D/NZ6/00136).
文摘Pathogenic microorganisms produce numerous metabolites,including volatile organic compounds(VOCs).Monitoring these metabolites in biological matrices(e.g.,urine,blood,or breath)can reveal the presence of specific microorganisms,enabling the early diagnosis of infections and the timely implementation of tar-geted therapy.However,complex matrices only contain trace levels of VOCs,and their constituent com-ponents can hinder determination of these compounds.Therefore,modern analytical techniques enabling the non-invasive identification and precise quantification of microbial VOCs are needed.In this paper,we discuss bacterial VOC analysis under in vitro conditions,in animal models and disease diagnosis in humans,including techniques for offline and online analysis in clinical settings.We also consider the advantages and limitations of novel microextraction techniques used to prepare biological samples for VOC analysis,in addition to reviewing current clinical studies on bacterial volatilomes that address inter-species in-teractions,the kinetics of VOC metabolism,and species-and drug-resistance specificity.
文摘Developing Cu single-atom catalysts(SACs)with well-defined active sites is highly desirable for producing CH4 in the electrochemical CO_(2) reduction reaction and understanding the structure-property relationship.Herein,a new graphdiyne analogue with uniformly distributed N_(2)-bidentate(note that N_(2)-bidentate site=N^N-bidentate site;N_(2)≠dinitrogen gas in this work)sites are synthesized.Due to the strong interaction between Cu and the N_(2)-bidentate site,a Cu SAC with isolated undercoordinated Cu-N_(2) sites(Cu1.0/N_(2)-GDY)is obtained,with the Cu loading of 1.0 wt%.Cu1.0/N_(2)-GDY exhibits the highest Faradaic efficiency(FE)of 80.6% for CH_(4) in electrocatalytic reduction of CO_(2) at-0.96 V vs.RHE,and the partial current density of CH_(4) is 160 mA cm^(-2).The selectivity for CH_(4) is maintained above 70% when the total current density is 100 to 300 mA cm^(-2).More remarkably,the Cu1.0/N_(2)-GDY achieves a mass activity of 53.2 A/mgCu toward CH4 under-1.18 V vs.RHE.In situ electrochemical spectroscopic studies reveal that undercoordinated Cu-N_(2) sites are more favorable in generating key ^(*)COOH and ^(*)CHO intermediate than Cu nanoparticle counterparts.This work provides an effective pathway to produce SACs with undercoordinated Metal-N_(2) sites toward efficient electrocatalysis.