期刊文献+
共找到1,866篇文章
< 1 2 94 >
每页显示 20 50 100
Electrochemical CO2 reduction over nitrogen-doped SnO2 crystal surfaces 被引量:2
1
作者 Yuefeng Zhang Jianjun Liu +3 位作者 Zengxi Wei Quanhui Liu Caiyun Wang Jianmin Ma 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第6期22-30,共9页
Crystal planes of a catalyst play crucial role in determining the electrocatalytic performance for CO2 reduction.The catalyst SnO2 can convert CO2 molecules into valuable formic acid(HCOOH).Incorporating heteroatom N ... Crystal planes of a catalyst play crucial role in determining the electrocatalytic performance for CO2 reduction.The catalyst SnO2 can convert CO2 molecules into valuable formic acid(HCOOH).Incorporating heteroatom N into SnO2 further improves its catalytic activity.To understand the mechanism and realize a highly efficient CO2-to-HCOOH conversion,we used density functional theory(DFT)to calculate the free energy of CO2 reduction reactions(CO2RR)on different crystal planes of N-doped SnO2(N-SnO2).The results indicate that N-SnO2 lowered the activation energy of intermediates leading to a better catalytic performance than pure SnO2.We also discovered that the N-Sn O2 (211)plane possesses the most suitable free energy during the reduction process,exhibiting the best catalytic ability for the CO2-to-HCOOH conversion.The intermediate of CO2RR on N-SnO2 is HCOO*or COOH* instead of OCHO*.These results may provide useful insights into the mechanism of CO2RR,and promote the development of heteroatomdoped catalyst for efficient CO2RR. 展开更多
关键词 CO2 REDUCTION reaction sno2 Crystal surface ELECTROCATALYSIS First PRINCIPLES
下载PDF
N-doped graphene quantum dot-decorated N-TiO2/P-doped porous hollow g-C_(3)N_(4) nanotube composite photocatalysts for antibiotic photodegradation and H2 production 被引量:1
2
作者 Jingshu Yuan Yao Zhang +2 位作者 Xiaoyan Zhang Junjie Zhang Shen’gen Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CSCD 2024年第1期165-178,共14页
Exclusive responsiveness to ultraviolet light (~3.2 eV) and high photogenerated charge recombination rate are the two primary drawbacks of pure TiO_(2). We combined N-doped graphene quantum dots (N-GQDs), morphology r... Exclusive responsiveness to ultraviolet light (~3.2 eV) and high photogenerated charge recombination rate are the two primary drawbacks of pure TiO_(2). We combined N-doped graphene quantum dots (N-GQDs), morphology regulation, and heterojunction construction strategies to synthesize N-GQD/N-doped TiO_(2)/P-doped porous hollow g-C_(3)N_(4) nanotube (PCN) composite photocatalysts (denoted as G-TPCN). The optimal sample (G-TPCN doped with 0.1wt% N-GQD, denoted as 0.1% G-TPCN) exhibits significantly enhanced photoabsorption, which is attributed to the change in bandgap caused by elemental doping (P and N), the improved light-harvesting resulting from the tube structure, and the upconversion effect of N-GQDs. In addition, the internal charge separation and transfer capability of0.1% G-TPCN are dramatically boosted, and its carrier concentration is 3.7, 2.3, and 1.9 times that of N-TiO_(2), PCN, and N-TiO_(2)/PCN(TPCN-1), respectively. This phenomenon is attributed to the formation of Z-scheme heterojunction between N-TiO_(2) and PCNs, the excellent electron conduction ability of N-GQDs, and the short transfer distance caused by the porous nanotube structure. Compared with those of N-TiO_(2), PCNs, and TPCN-1, the H2 production activity of 0.1%G-TPCN under visible light is enhanced by 12.4, 2.3, and 1.4times, respectively, and its ciprofloxacin (CIP) degradation rate is increased by 7.9, 5.7, and 2.9 times, respectively. The optimized performance benefits from excellent photoresponsiveness and improved carrier separation and migration efficiencies. Finally, the photocatalytic mechanism of 0.1% G-TPCN and five possible degradation pathways of CIP are proposed. This study clarifies the mechanism of multiple modification strategies to synergistically improve the photocatalytic performance of 0.1% G-TPCN and provides a potential strategy for rationally designing novel photocatalysts for environmental remediation and solar energy conversion. 展开更多
关键词 n-doped TiO_(2) n-doped graphene quantum dots P-doped g-C_(3)N_(4) porous hollow nanotube heterojunction photocatalysis
下载PDF
High-efficiency sodium storage of Co_(0.85)Se/WSe_(2) encapsulated in N-doped carbon polyhedron via vacancy and heterojunction engineering
3
作者 Ya Ru Pei Hong Yu Zhou +5 位作者 Ming Zhao Jian Chen Li Xin Ge Wei Zhang Chun Cheng Yang Qing Jiang 《Carbon Energy》 SCIE EI CAS CSCD 2024年第1期94-107,共14页
With the advantage of fast charge transfer,heterojunction engineering is identified as a viable method to reinforce the anodes'sodium storage performance.Also,vacancies can effectively strengthen the Na+adsorption... With the advantage of fast charge transfer,heterojunction engineering is identified as a viable method to reinforce the anodes'sodium storage performance.Also,vacancies can effectively strengthen the Na+adsorption ability and provide extra active sites for Na+adsorption.However,their synchronous engineering is rarely reported.Herein,a hybrid of Co_(0.85)Se/WSe_(2) heterostructure with Se vacancies and N-doped carbon polyhedron(CoWSe/NCP)has been fabricated for the first time via a hydrothermal and subsequent selenization strategy.Spherical aberration-corrected transmission electron microscopy confirms the phase interface of the Co_(0.85)Se/WSe_(2) heterostructure and the existence of Se vacancies.Density functional theory simulations reveal the accelerated charge transfer and enhanced Na+adsorption ability,which are contributed by the Co_(0.85)Se/WSe_(2) heterostructure and Se vacancies,respectively.As expected,the CoWSe/NCP anode in sodium-ion battery achieves outstanding rate capability(339.6 mAh g^(−1) at 20 A g^(−1)),outperforming almost all Co/W-based selenides. 展开更多
关键词 Co_(0.85)Se/WSe_(2)heterostructure density functional theory simulations n-doped carbon polyhedron Se vacancies sodium-ion batteries
下载PDF
Unraveling the Role of Nitrogen-Doped Carbon Nanowires Incorporated with MnO_(2)Nanosheets as High Performance Cathode for Zinc-Ion Batteries 被引量:1
4
作者 Xiaohui Li Qiancheng Zhou +5 位作者 Ze Yang Xing Zhou Dan Qiu Huajun Qiu Xintang Huang Ying Yu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第3期205-213,共9页
Manganese-based cathode materials are considered as a promising candidate for rechargeable aqueous zinc-ion batteries(ZIBs).Suffering from poor conductive and limited structure tolerance,various carbon matrix,especial... Manganese-based cathode materials are considered as a promising candidate for rechargeable aqueous zinc-ion batteries(ZIBs).Suffering from poor conductive and limited structure tolerance,various carbon matrix,especially N-doped carbon,were employed to incorporate with MnO_(2)for greatly promoted electrochemical performances.However,the related underlying mechanism is still unknown,which is unfavorable to guide the design of high performance electrode.Herein,by incorporating layered MnO_(2)with N-doped carbon nanowires,a free-standing cathode with hierarchical core-shell structure(denoted as MnO_(2)@NC)is prepared.Benefiting from the N-doped carbon and rational architecture,the MnO_(2)@NC electrode shows an enhanced specific capacity(325 mAh g^(−1)at 0.1 A g^(−1))and rate performance(90 mAh g^(−1)at 2 A g^(−1)),as well as improved cycling stability.Furthermore,the performance improvement mechanism of MnO_(2)incorporated by N-doped carbon is investigated by X-ray photoelectron spectroscopy(XPS),Raman spectrums and density functional theory(DFT)calculation.The N atom elongates the Mn-O bond and reduces the valence of Mn^(4+)ion in MnO_(2)crystal by delocalizing its electron clouds.Thus,the electrostatic repulsion will be weakened when Zn^(2+)/H^(+)insert into the host MnO_(2)lattices,which is profitable to more cation insertion and faster ion transfer kinetics for higher capacity and rate capability.This work elucidates a fundamental understanding of the functions of N-doped carbon in composite materials and shed light on a practical pathway to optimize other electrode materials. 展开更多
关键词 core-shell nanostructure MnO_(2)nanosheets n-doped carbon Zn ion batteries
下载PDF
Binary molten salt in situ synthesis of sandwich-structure hybrids of hollowβ-Mo2C nanotubes and N-doped carbon nanosheets for hydrogen evolution reaction
5
作者 Tianyu Gong Yang Liu +6 位作者 Kai Cui Jiali Xu Linrui Hou Haowen Xu Ruochen Liu Jianlin Deng Changzhou Yuan 《Carbon Energy》 SCIE EI CAS CSCD 2023年第12期111-124,共14页
Focused exploration of earth-abundant and cost-efficient non-noble metal electrocatalysts with superior hydrogen evolution reaction(HER)performance is very important for large-scale and efficient electrolysis of water... Focused exploration of earth-abundant and cost-efficient non-noble metal electrocatalysts with superior hydrogen evolution reaction(HER)performance is very important for large-scale and efficient electrolysis of water.Herein,a sandwich composite structure(designed as MS-Mo2C@NCNS)ofβ-Mo2C hollow nanotubes(HNT)and N-doped carbon nanosheets(NCNS)is designed and prepared using a binary NaCl–KCl molten salt(MS)strategy for HER.The temperature-dominant Kirkendall formation mechanism is tentatively proposed for such a three-dimensional hierarchical framework.Due to its attractive structure and componential synergism,MS-Mo2C@NCNS exposes more effective active sites,confers robust structural stability,and shows significant electrocatalytic activity/stability in HER,with a current density of 10 mA cm-2 and an overpotential of only 98 mV in 1 M KOH.Density functional theory calculations point to the synergistic effect of Mo2C HNT and NCNS,leading to enhanced electronic transport and suitable adsorption free energies of H*(ΔGH*)on the surface of electroactive Mo2C.More significantly,the MS-assisted synthetic methodology here provides an enormous perspective for the commercial development of highly active non-noble metal electrocatalysts toward efficient hydrogen evolution. 展开更多
关键词 binary molten-salt synthesis hydrogen evolution reaction Mo2C hollow nanotubes n-doped carbon nanosheets sandwich structure
下载PDF
Naturally Nitrogen-Doped Biochar Made from End-of-Life Wood Panels for SO_(2) Gas Depollution
6
作者 Hamdi Hachicha Mamadou Dia +3 位作者 Hassine Bouafif Ahmed Koubaa Mohamed Khlif Flavia Lega Braghiroli 《Journal of Renewable Materials》 EI 2023年第11期3807-3829,共23页
Reconstituted wood panels have several advantages in terms of ease of manufacturing,but their shorter life span results in a huge amount of reconstituted wood panels being discarded in sorting centers yearly.Currently... Reconstituted wood panels have several advantages in terms of ease of manufacturing,but their shorter life span results in a huge amount of reconstituted wood panels being discarded in sorting centers yearly.Currently,the most common approach for dealing with this waste is incineration.In this study,reconstituted wood panels were converted into activated biochar through a two-step thermochemical process:(i)biochar production using pilot scale fast pyrolysis at 250 kg/h and 450℃;and(ii)a physical activation at three temperatures(750℃,850℃ and 950℃)using an in-house activation furnace(1 kg/h).Results showed that the first stage removed about 66% of the nitrogen from the wood panels in the form of NO,NH3,and trimethylamine,which were detected in small amounts compared to emitted CO_(2).Compared to other types of thermochemical conversion methods(e.g.,slow pyrolysis),isocyanic acid and hydrogen cyanide were not detected in this study.The second stage produced activated biochar with a specific surface area of up to 865 m^(2)/g at 950℃.The volatile gases generated during activation were predominantly composed of toluene and benzene.This two-step process resulted in nitrogen-rich carbon in the form of pyrrolic and pyridinic nitrogen.Activated biochars were then evaluated for their SO_(2) retention performance and showed an excellent adsorption capacity of up to 2140 mg/g compared to 65 mg/g for a commercial activated carbon(889 m^(2)/g).End-of-life reconstituted wood panels and SO_(2) gas are problematic issues in Canada where the economy largely revolves around forestry and mining industries. 展开更多
关键词 End-of-life wood panels PYROLYSIS activation biochar and activated biochar n-doped carbons SO_(2)removal
下载PDF
Multilevel optoelectronic hybrid memory based on N-doped Ge_(2)Sb_(2)Te_(5)film with low resistance drift and ultrafast speed
7
作者 吴奔 魏涛 +6 位作者 胡敬 王瑞瑞 刘倩倩 程淼 李宛飞 凌云 刘波 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第10期724-730,共7页
Multilevel phase-change memory is an attractive technology to increase storage capacity and density owing to its high-speed,scalable and non-volatile characteristics.However,the contradiction between thermal stability... Multilevel phase-change memory is an attractive technology to increase storage capacity and density owing to its high-speed,scalable and non-volatile characteristics.However,the contradiction between thermal stability and operation speed is one of key factors to restrain the development of phase-change memory.Here,N-doped Ge_(2)Sb_(2)Te_(5)-based optoelectronic hybrid memory is proposed to simultaneously implement high thermal stability and ultrafast operation speed.The picosecond laser is adopted to write/erase information based on reversible phase transition characteristics whereas the resistance is detected to perform information readout.Results show that when N content is 27.4 at.%,N-doped Ge_(2)Sb_(2)Te_(5)film possesses high ten-year data retention temperature of 175℃and low resistance drift coefficient of 0.00024 at 85℃,0.00170 at 120℃,and 0.00249 at 150℃,respectively,owing to the formation of Ge–N,Sb–N,and Te–N bonds.The SET/RESET operation speeds of the film reach 520 ps/13 ps.In parallel,the reversible switching cycle of the corresponding device is realized with the resistance ratio of three orders of magnitude.Four-level reversible resistance states induced by various crystallization degrees are also obtained together with low resistance drift coefficients.Therefore,the N-doped Ge_(2)Sb_(2)Te_(5)thin film is a promising phase-change material for ultrafast multilevel optoelectronic hybrid storage. 展开更多
关键词 multilevel optoelectronic hybrid memory n-doped Ge_(2)Sb_(2)Te_(5)thin film low resistance drift ultrafast speed
下载PDF
Growth of SnO_2 Nanoflowers on N-doped Carbon Nanofibers as Anode for Li-and Na-ion Batteries 被引量:10
8
作者 Jiaojiao Liang Chaochun Yuan +4 位作者 Huanhuan Li Kai Fan Zengxi Wei Hanqi Sun Jianmin Ma 《Nano-Micro Letters》 SCIE EI CAS 2018年第2期21-29,共9页
It is urgent to solve the problems of the dramatic volume expansion and pulverization of SnO_2 anodes during cycling process in battery systems. To address this issue, we design a hybrid structure of N-doped carbon fi... It is urgent to solve the problems of the dramatic volume expansion and pulverization of SnO_2 anodes during cycling process in battery systems. To address this issue, we design a hybrid structure of N-doped carbon fibers@SnO_2 nanoflowers(NC@SnO_2) to overcome it in this work. The hybrid NC@SnO_2 is synthesized through the hydrothermal growth of SnO_2 nanoflowers on the surface of N-doped carbon fibers obtained by electrospinning. The NC is introduced not only to provide a support framework in guiding the growth of the SnO_2 nanoflowers and prevent the flower-like structures from agglomeration, but also serve as a conductive network to accelerate electronic transmission along one-dimensional structure effectively. When the hybrid NC@SnO_2 was served as anode, it exhibits a high discharge capacity of 750 Ah g^(-1) at 1 A g^(-1) after 100 cycles in Li-ion battery and 270 mAh g^(-1) at 100 mA g^(-1) for 100 cycles in Na-ion battery, respectively. 展开更多
关键词 sno2 NANOSTRUCTURES ANODE Li-ion battery Na-ion battery
下载PDF
Well-dispersed SnO2 nanocrystals on N-doped carbon nanowires as efficient electrocatalysts for carbon dioxide reduction 被引量:1
9
作者 Baohua Zhang Lizhen Sun +2 位作者 Yueqing Wang Si Chen Jintao Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第2期7-14,共8页
The conversion of carbon dioxide into valuable organic compounds is a highly promising approach to address the energy issues and environmental problems(e.g., global warming). Herein, we presents a facile and efficient... The conversion of carbon dioxide into valuable organic compounds is a highly promising approach to address the energy issues and environmental problems(e.g., global warming). Herein, we presents a facile and efficient method to prepare highly dense and well-dispersed SnO2 nanocrystals on 1 D N-doped carbon nanowires as advanced catalysts for the efficient electroreduction of CO2 to formate. The ultrasmall SnO2 coated on the N-doped carbon nanowires(SnO2@N-CNW) has been synthesized via the simple hydrothermal treatment coupled with a pyrolysis process. The unique structure enables to expose the active tin oxide and also provides the facile pathways for rapid transfer of electron and electrolyte along with the highly porous carbon foam composed with interconnected carbon nanowires. Therefore, SnO2@NCNW electrocatalyst exhibits good durability and high selectivity for formate formation with a Faradaic efficiency of ca. 90%. This work demonstrates a simple method to rationally design high-dense tin oxide nanocrystals on the conductive carbon support as advanced catalysts for CO2 electroreduction. 展开更多
关键词 sno2 nanocrystal N-DOPING ELECTROCATALYST CARBON dioxide reduction CARBON nanowire
下载PDF
SnO_(2)/C复合纳米材料的制备及储钠性质的研究
10
作者 徐丽红 王旗 《大学物理实验》 2023年第2期85-90,共6页
二氧化锡由于其低电位和高储钠理论容量以及绿色无毒的优点被认为是最有前途钠离子电池负极材料之一。但其导电性不好,且在嵌/脱钠的过程中会发生体积膨胀,从而导致电池的容量和循环稳定性等电化学性能下降。碳具有良好的导电性,同时能... 二氧化锡由于其低电位和高储钠理论容量以及绿色无毒的优点被认为是最有前途钠离子电池负极材料之一。但其导电性不好,且在嵌/脱钠的过程中会发生体积膨胀,从而导致电池的容量和循环稳定性等电化学性能下降。碳具有良好的导电性,同时能减缓材料在脱/嵌钠过程的体积膨胀,本文采用一步合成制备SnO_(2)/C复合纳米材料,并将其作为钠离子电池的负极材料进行研究。结果发现碳包覆花瓣状SnO_(2)复合材料相比于纯的SnO_(2)具有良好的储钠性能. 展开更多
关键词 二氧化锡 钠离子电池 复合纳米材料 电化学性能
下载PDF
SnO/Nd_(2)O_(3)复合材料的制备及可见光催化性能 被引量:1
11
作者 孙长红 梁宝岩 《印染》 CAS 北大核心 2023年第3期1-4,共4页
通过超声反应制备了SnO/Nd_(2)O_(3)复合材料,评估了复合材料在可见光下降解甲基橙的光降解性能。结果表明,Nd_(2)O_(3)能很好地与SnO复合。SnO/Nd_(2)O_(3)复合材料在可见光区的吸收比SnO样品强。其中,SnO/2%Nd_(2)O_(3)复合材料表现... 通过超声反应制备了SnO/Nd_(2)O_(3)复合材料,评估了复合材料在可见光下降解甲基橙的光降解性能。结果表明,Nd_(2)O_(3)能很好地与SnO复合。SnO/Nd_(2)O_(3)复合材料在可见光区的吸收比SnO样品强。其中,SnO/2%Nd_(2)O_(3)复合材料表现出最高的光催化性能,在60 min内可以降解99.6%的甲基橙。 展开更多
关键词 光催化降解 可见光 sno Nd_(2)O_(3) 甲基橙 复合材料
下载PDF
Preparation and characterization of visible-light-active nitrogen-doped TiO_2 photocatalyst 被引量:10
12
作者 HUANGXian-huai TANGYu-chao +2 位作者 HUChun YUHan-qing CHENChu-sheng 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2005年第4期562-565,共4页
A visible-light photocatalyst was prepared by calcination of the hydrolysis product of Ti(SO_4)_2 with ammonia as precipitator. The color of this photocatalyst was vivid yellow. It could absorb light under 550 nm wave... A visible-light photocatalyst was prepared by calcination of the hydrolysis product of Ti(SO_4)_2 with ammonia as precipitator. The color of this photocatalyst was vivid yellow. It could absorb light under 550 nm wavelength. The crystal structure of anatase was characterized by XRD. The structure analysis result of X-ray fluorescence(XRF) shows that doped-nitrogen was presented in the sample. The photocatalytic activities were evaluated using methyl orange and phenol as model pollutants. The photocatalytic activities of samples were increasing gradually with calcination temperature from 400℃ to 700℃ under UV irradiation. It can be seen that the degradation of methyl orange follows zero-order kinetics. However, the calcination temperatures have no significant influence on the degradation of phenol under sunlight. The N-doped catalyst shows higher activity than the bare one under solar irradiation. 展开更多
关键词 CATALYSIS n-doped PHOTOCATALYST TiO_2 visible light activity
下载PDF
Designing N-doped graphene/ReSe_(2)/Ti_(3)C_(2) MXene heterostructure frameworks as promising anodes for high-rate potassium-ion batteries 被引量:9
13
作者 Zhou Xia Xiwen Chen +7 位作者 Haina Cia Zhaodi Fan Yuyang Yi Wanjian Yin Nan Wei Jingsheng Cai Yanfeng Zhang Jingyu Sun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第2期155-162,I0006,共9页
Developing high-performance anodes for potassium ion batteries(KIBs) is of paramount significance but remains challenging.In the normal sense,electrode materials are prepared by ubiquitous wet chemical routes,which ot... Developing high-performance anodes for potassium ion batteries(KIBs) is of paramount significance but remains challenging.In the normal sense,electrode materials are prepared by ubiquitous wet chemical routes,which otherwise might not be versatile enough to create desired heterostructures and/or form clean interfacial areas for fast transport of K-ions and electrons.Along this line,rate capability/cycling stability of resulting KIBs are greatly handicapped.Herein we present an all-chemical vapor deposition approach to harness the direct synthesis of nitrogen-doped graphene(NG)/rhenium diselenide(ReSe_2)hybrids over three-dimensional MXene supports as superior heterostructure anode material for KIBs.In such an innovative design,1 T'-ReSe2 nanoparticles are sandwiched in between the NG coatings and MXene frameworks via strong interfacial interactions,thereby affording facile K~+ diffusion,enhancing overall conductivity,boosting high-power performance and reinforcing structural stability of electrodes.Thus-constructed anode delivers an excellent rate performance of 138 mAh g^(-1) at 10.0 A g^(-1) and a high reversible capacity of 90 mAh g^(-1) at 5 A g^(-1) after 300 cycles.Furthermore,the potassium storage mechanism has been systematically probed by advanced in situlex situ characterization techniques in combination with first principles computations. 展开更多
关键词 K-ion batteries High-rate ReSe_(2) n-doped graphene HETEROSTRUCTURE
下载PDF
Surface engineering of ZnO electrocatalyst by N doping towards electrochemical CO_(2) reduction 被引量:1
14
作者 Rohini Subhash Kanase Getasew Mulualem Zewdie +7 位作者 Maheswari Arunachalam Jyoti Badiger Suzan Abdelfattah Sayed Kwang-Soon Ahn Jun-Seok Ha Uk Sim Hyeyoung Shin Soon Hyung Kang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期71-81,I0002,共12页
The discovery of efficient,selective,and stable electrocatalysts can be a key point to produce the largescale chemical fuels via electrochemical CO_(2) reduction(ECR).In this study,an earth-abundant and nontoxic ZnO-b... The discovery of efficient,selective,and stable electrocatalysts can be a key point to produce the largescale chemical fuels via electrochemical CO_(2) reduction(ECR).In this study,an earth-abundant and nontoxic ZnO-based electrocatalyst was developed for use in gas-diffusion electrodes(GDE),and the effect of nitrogen(N)doping on the ECR activity of ZnO electrocatalysts was investigated.Initially,a ZnO nanosheet was prepared via the hydrothermal method,and nitridation was performed at different times to control the N-doping content.With an increase in the N-doping content,the morphological properties of the nanosheet changed significantly,namely,the 2D nanosheets transformed into irregularly shaped nanoparticles.Furthermore,the ECR performance of Zn O electrocatalysts with different N-doping content was assessed in 1.0 M KHCO_(3) electrolyte using a gas-diffusion electrode-based ECR cell.While the ECR activity increased after a small amount of N doping,it decreased for higher N doping content.Among them,the N:ZnO-1 h electrocatalysts showed the best CO selectivity,with a faradaic efficiency(FE_(CO))of 92.7%at-0.73 V vs.reversible hydrogen electrode(RHE),which was greater than that of an undoped Zn O electrocatalyst(FE_(CO)of 63.4%at-0.78 V_(RHE)).Also,the N:ZnO-1 h electrocatalyst exhibited outstanding durability for 16 h,with a partial current density of-92.1 mA cm^(-2).This improvement of N:ZnO-1 h electrocatalyst can be explained by density functional theory calculations,demonstrating that this improvement of N:ZnO-1 h electrocatalyst comes from(ⅰ)the optimized active sites lowering the free energy barrier for the rate-determining step(RDS),and(ⅱ)the modification of electronic structure enhancing the electron transfer rate by N doping. 展开更多
关键词 ZNO n-doped ZnO Gas-diffusion electrode CO Selectivity Electrochemical CO_(2)reduction
下载PDF
In-situ structural evolution analysis of Zr-doped Na_(3)V_(2)(PO_(4))_(2)F_(3) coated by N-doped carbon layer as high-performance cathode for sodium-ion batteries 被引量:5
15
作者 Chuan Guo Jianwei Yang +7 位作者 Zhiyuan Cui Shuo Qi Qianqian Peng Weiwei Sun Li-Ping Lv Yi Xu Yong Wang Shuangqiang Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第2期514-523,共10页
With great superiorities in energy density,rate capability and structural stability,Na_(3)V_(2)(PO_(4))_(2) F_(3)(NVPF)has attracted much attentions as cathode of sodium ion battery(SIB),but it also faces challenges o... With great superiorities in energy density,rate capability and structural stability,Na_(3)V_(2)(PO_(4))_(2) F_(3)(NVPF)has attracted much attentions as cathode of sodium ion battery(SIB),but it also faces challenges on its poor intrinsic electronic conductivity and the controversial de/sodiation mechanism.Herein,a series of Zr-doped NVPF coated by N-doped carbon layer(~5 nm in thickness,homogenously)materials are fabricated by a sol-gel method,and the optimized heteroatom-doping amounts of Zr and N doping improve intrinsic properties on enlarging lattice distance and enhancing electronic conductivity,respectively.Specifically,among all samples of Na_(3) V_(2-x)Zr_(x)(PO_(4))_(2) F_(3)/NC(NVPF-Zr-x/NC,x=0,0.01,0.02,0.05,and 0.1),the optimized electrode of NVPF-Zr-0.02/NC delivers high reversible capacities(119.2 mAh g^(-1) at0.5 C),superior rate capability(98.1 mA h g^(-1) at 20 C)and excellent cycling performance.The structural evolution of NVPF-Zr-0.02/NC electrode,in-situ monitored by X-ray diffractometer,follows a step-wise Na-extraction/intercalation mechanism with reversible multi-phase changes,not just a solid-solutionreaction one.Full cells of NVPF-Zr-0.02/NC//hard carbon demonstrate high capacity(99.8 mA h g^(-1) at 0.5 C),high out-put voltage(3.5 V)and good cycling stability.This work is favorable to accelerate the development of high-performance cathode materials and explore possible redox reaction mechanisms of SIBs. 展开更多
关键词 Sodium ion batteries Na_(3)V_(2)(PO_(4))_(2)F_(3) Zr-doping n-doped carbon In-situ structural analysis
下载PDF
Achieving highly-efficient H2S gas sensor by flower-like SnO_(2)–SnO/porous GaN heterojunction
16
作者 刘增 都灵 +7 位作者 张少辉 边昂 方君鹏 邢晨阳 李山 汤谨诚 郭宇锋 唐为华 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第2期193-200,共8页
A flower-like SnO_(2)–SnO/porous Ga N(FSS/PGaN) heterojunction was fabricated for the first time via a facile spraying process, and the whole process also involved hydrothermal preparation of FSS and electrochemical ... A flower-like SnO_(2)–SnO/porous Ga N(FSS/PGaN) heterojunction was fabricated for the first time via a facile spraying process, and the whole process also involved hydrothermal preparation of FSS and electrochemical wet etching of GaN,and SnO_(2)–SnO composites with p–n junctions were loaded onto PGaN surface directly applied to H_(2)S sensor. Meanwhile,the excellent transport capability of heterojunction between FSS and PGaN facilitates electron transfer, that is, a response time as short as 65 s and a release time up to 27 s can be achieved merely at 150℃ under 50 ppm H_(2)S concentration, which has laid a reasonable theoretical and experimental foundation for the subsequent PGaN-based heterojunction gas sensor.The lowering working temperature and high sensitivity(23.5 at 200 ppm H2S) are attributed to the structure of PGaN itself and the heterojunction between SnO_(2)–SnO and PGaN. In addition, the as-obtained sensor showed ultra-high test stability.The simple design strategy of FSS/PGaN-based H_(2)S sensor highlights its potential in various applications. 展开更多
关键词 gas sensor sno_(2)–sno porous GaN HETEROJUNCTION
下载PDF
N-doped coaxial CNTs@a-Fe_2O_3@C nanofibers as anode material for high performance lithium ion battery 被引量:2
17
作者 Peng Huang Wei Tao +6 位作者 Haixia Wu Xiaogang Li Ting Yin Qian Zhang Wen Qi Guo Gao Daxiang Cui 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第5期1453-1460,共8页
N-doped coaxial CNTs@α-Fe_2O_3@C nanofibers have been successfully synthesized according to a facile solvothermal/hydrothermal method. The obtained CNTs@α-Fe_2O_3@C nanofibers composites exhibited spe- cial three-di... N-doped coaxial CNTs@α-Fe_2O_3@C nanofibers have been successfully synthesized according to a facile solvothermal/hydrothermal method. The obtained CNTs@α-Fe_2O_3@C nanofibers composites exhibited spe- cial three-dimensional (3-D) network structure, which endows they promising candidate for anode ma- terials of lithium ion battery. The coaxial property of CNTs@α-Fe_2O_3@C nanofibers could significantly improve the cycling and rate performance owing to the acceleration of charge/electron transfer, improve- ment of conductivity, maintaining of structural integrity and inhibiting the aggregation. The α-Fe_2O_3 nanoparticles with small size and high percentage of N-doped amount could further improve the elec- trochemical performance. As for the CNTs@α-Fe_2O_3@C nanofibers, the capacity presented a high value of 1255.4 mAh/g at 0.1 C, and retained at 1213.4 mAh/g after 60 cycles. Even at high rate of 5 C, the ca- pacity still exhibited as high as 319 mAh/g. The results indicated that the synthesized N-doped coaxial CNTs@α-Fe_2O_3@C nanofibers exhibited high cvcling and rate oerformance. 展开更多
关键词 n-doped Coaxial nanofibers Lithium batteries α-Fe_2O_3
下载PDF
Visible Light-Responsive N-Doped TiO_(2) Photocatalysis:Synthesis,Characterizations,and Applications 被引量:2
18
作者 Shiwen Du Juhong Lian Fuxiang Zhang 《Transactions of Tianjin University》 EI CAS 2022年第1期33-52,共20页
Photocatalysis based on semiconductors has recently been receiving considerable research interest because of its extensive applications in environmental remediation and renewable energy generation.Various semiconducto... Photocatalysis based on semiconductors has recently been receiving considerable research interest because of its extensive applications in environmental remediation and renewable energy generation.Various semiconductor-based materials that are vital to solar energy utilization have been extensively investigated,among which titanium oxide(TiO_(2))has attracted considerable attention because of its exceptional physicochemical characteristics.However,the sluggish responsiveness to visible light in the solar spectrum and the inefficient separation of photoinduced electron-hole pairs hamper the practical application of TiO_(2) materials.To overcome the aforementioned serious drawbacks of TiO_(2),numerous strategies,such as doping with foreign atoms,particularly nitrogen(N),have been improved in the past few decades.This review aims to provide a comprehensive update and description of the recent developments of N-doped TiO_(2) materials for visible lightresponsive photocatalysis,such as(1)the preparation of N-doped/co-doped TiO_(2) photocatalysts and(2)mechanistic studies on the reasons for visible light response.Furthermore,the most recent and significant advances in the field of solar energy applications of modified N-doped TiO_(2) are summarized.The analysis indicated the critical need for further development of these types of materials for the solar-to-energy conversion,particularly for water splitting purposes. 展开更多
关键词 n-doped TiO_(2) Visible light-responsive PHOTOCATALYSIS Solar energy
下载PDF
Hierarchical N-doped carbon nanocages/carbon textiles as a flexible O2 electrode for Li–O2 batteries 被引量:2
19
作者 Jia Liu Dan Li +5 位作者 Siqi Zhang Ying Wang Guiru Sun Zhao Wang Haiming Xie Liqun Sun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第7期94-98,I0004,共6页
The conventional Li–O2 battery(LOB)has hardly been considered as a next-generation flexible electronics thus far,since it is bulk,inflexible and limited by the absence of an adjustable cell configuration.Here,we pres... The conventional Li–O2 battery(LOB)has hardly been considered as a next-generation flexible electronics thus far,since it is bulk,inflexible and limited by the absence of an adjustable cell configuration.Here,we present a flexible Li–O2 cell using N-doped carbon nanocages grown onto the carbon textiles(NCNs/CTs)as a self-standing and binder-free O2 electrode.The highly flexible NCNs/CTs exhibits an excellent mechanic durability,a promising catalytic activity towards the ORR and OER,a considerable cyclability of more than 70 cycles with an overpotential of 0.36 V on the 1 stcycle at a constant current density of 0.2 m A/cm2,a good rate capability,a superior reversibility with formation and decomposition of desired Li2 O2,and a highly electrochemical stability even under stringent bending and twisting conditions.Our work represents a promising progress in the material development and architecture design of O2 electrode for flexible LOBs. 展开更多
关键词 n-doped carbon nanocages/carbon textiles Flexible Binder-free Li–O2 batteries
下载PDF
Enhanced ionic conductivity in a novel composite electrolyte based on Gd-doped SnO_(2) nanotubes for ultra-long-life all-solid-state lithium metal batteries
20
作者 Lugang Zhang Nanping Deng +7 位作者 Junbao Kang Xiaoxiao Wang Hongjing Gao Yarong Liu Hao Wang Gang Wang Bowen Cheng Weimin Kang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第2期326-337,I0009,共13页
All-solid-state electrolytes are exceedingly attractive because of the outstanding inherent safety and energy density compared to liquid electrolytes.Whereas,it is still formidable to simultaneously design solid elect... All-solid-state electrolytes are exceedingly attractive because of the outstanding inherent safety and energy density compared to liquid electrolytes.Whereas,it is still formidable to simultaneously design solid electrolytes with favorable electrode/electrolyte interface compatibility and high ionic conductivity in a simple and scalable manner.Hence,the oxygen-vacancy-rich Gd-doped SnO_(2) nanotubes(GDS NTs)are innovatively prepared and applied to the electrolyte of all-solid-state lithium metal batteries for the first time.The addition of GDS NTs can validly construct long-range co ntinuous ion transport networks in the poly(ethylene oxide)(PEO)-based system and greatly improve the mechanical properties of the electrolyte.Compared to the PEO-based electrolyte,the composite electrolyte displays a higher lithium ion conductivity of 2.41×10^(-4) S cm^(-1) at 30℃,a higher lithium ion transference number up to 0.62 and a wider electrochemical window of 5 V at 50℃.In addition,the composite electrolyte manifests outstanding compatibility with high-voltage LiNi_(0.8)Mn_(0.1)Co_(0.1)O_(2)(NMC811)cathode,LiFePO4 cathode and lithium metal anode.The assembled Li/Li symmetric battery exhibits stable Li plating/stripping cycling performance,which can cycle steadily for 1500 h at a capacity of 0.3 mA h cm^(-2).And Li/LiFePO4 battery still maintains a high capacity of 131.54 mA h g^(-1) at 0.5C after 800 cycles,which has a superior capacity retention rate of 93.2%.The obtained novel composite electrolyte has promising application prospects in the field of all-solid-state lithium metal cells. 展开更多
关键词 All-solid-state lithium metal batteries Gd-doped sno2 nanotubes Interfacial stability Oxygen vacancies Solid-state composite electrolytes
下载PDF
上一页 1 2 94 下一页 到第
使用帮助 返回顶部