期刊文献+
共找到458篇文章
< 1 2 23 >
每页显示 20 50 100
Binary molten salt in situ synthesis of sandwich-structure hybrids of hollowβ-Mo2C nanotubes and N-doped carbon nanosheets for hydrogen evolution reaction
1
作者 Tianyu Gong Yang Liu +6 位作者 Kai Cui Jiali Xu Linrui Hou Haowen Xu Ruochen Liu Jianlin Deng Changzhou Yuan 《Carbon Energy》 SCIE EI CAS CSCD 2023年第12期111-124,共14页
Focused exploration of earth-abundant and cost-efficient non-noble metal electrocatalysts with superior hydrogen evolution reaction(HER)performance is very important for large-scale and efficient electrolysis of water... Focused exploration of earth-abundant and cost-efficient non-noble metal electrocatalysts with superior hydrogen evolution reaction(HER)performance is very important for large-scale and efficient electrolysis of water.Herein,a sandwich composite structure(designed as MS-Mo2C@NCNS)ofβ-Mo2C hollow nanotubes(HNT)and N-doped carbon nanosheets(NCNS)is designed and prepared using a binary NaCl–KCl molten salt(MS)strategy for HER.The temperature-dominant Kirkendall formation mechanism is tentatively proposed for such a three-dimensional hierarchical framework.Due to its attractive structure and componential synergism,MS-Mo2C@NCNS exposes more effective active sites,confers robust structural stability,and shows significant electrocatalytic activity/stability in HER,with a current density of 10 mA cm-2 and an overpotential of only 98 mV in 1 M KOH.Density functional theory calculations point to the synergistic effect of Mo2C HNT and NCNS,leading to enhanced electronic transport and suitable adsorption free energies of H*(ΔGH*)on the surface of electroactive Mo2C.More significantly,the MS-assisted synthetic methodology here provides an enormous perspective for the commercial development of highly active non-noble metal electrocatalysts toward efficient hydrogen evolution. 展开更多
关键词 binary molten-salt synthesis hydrogen evolution reaction Mo2C hollow nanotubes n-doped carbon nanosheets sandwich structure
下载PDF
Hollow cobalt oxide nanoparticles embedded in nitrogen-doped carbon nanosheets as an efficient bifunctional catalyst for Zn–air battery 被引量:7
2
作者 Yuhui Tian Li Xu +6 位作者 Jian Bao Junchao Qian Huaneng Su Huaming Li Haidong Gu Cheng Yan Henan Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第6期59-66,共8页
Rational design of low-cost, highly electrocatalytic activity, and stable bifunctional electrocatalysts for oxygen reduction reaction(ORR) and oxygen evolution reaction(OER) has been a great significant for metal–air... Rational design of low-cost, highly electrocatalytic activity, and stable bifunctional electrocatalysts for oxygen reduction reaction(ORR) and oxygen evolution reaction(OER) has been a great significant for metal–air batteries. Herein, an efficient bifunctional electrocatalyst based on hollow cobalt oxide nanoparticles embedded in nitrogen-doped carbon nanosheets(Co/N-Pg) is fabricated for Zn–air batteries. A lowcost biomass peach gum, consisting of carbon, oxygen, and hydrogen without other heteroatoms, was used as carbon source to form carbon matrix hosting hollow cobalt oxide nanoparticles. Meanwhile, the melamine was applied as nitrogen source and template precursor, which can convert to carbon-based template graphitic carbon nitride by polycondensation process. Owing to the unique structure and synergistic effect between hollow cobalt oxide nanoparticles and Co-N-C species, the proposal Co/N-Pg catalyst displays not only prominent bifunctional electrocatalytic activities for ORR and OER, but also excellent durability. Remarkably, the assembled Zn–air battery with Co/N-Pg air electrode exhibited a low discharge-charge voltage gap(0.81 V at 50 mA cm^-2) and high peak power density(119 mW cm^-2) with long-term cycling stability. This work presents an effective approach for engineering transition metal oxides and nitrogen modified carbon nanosheets to boost the performance of bifunctional electrocatalysts for Zn–air battery. 展开更多
关键词 Zn-air batteries OXYGEN reduction REACTION OXYGEN evolution REACTION NITROGEn-doped carbon nanosheets Cobalt oxides
下载PDF
Charge Engineering of Mo2C@Defect-Rich N-Doped Carbon Nanosheets for Efficient Electrocatalytic H2 Evolution 被引量:6
3
作者 Chunsheng Lei Wen Zhou +4 位作者 Qingguo Feng Yongpeng Lei Yi Zhang Yin Chen Jiaqian Qin 《Nano-Micro Letters》 SCIE EI CAS CSCD 2019年第3期155-164,共10页
Charge engineering of carbon materials with many defects shows great potential in electrocatalysis,and molybdenum carbide(Mo2C)is one of the noble-metal-free electrocatalysts with the most potential.Herein,we study th... Charge engineering of carbon materials with many defects shows great potential in electrocatalysis,and molybdenum carbide(Mo2C)is one of the noble-metal-free electrocatalysts with the most potential.Herein,we study the Mo2C on pyridinic nitrogen-doped defective carbon sheets(MoNCs)as catalysts for the hydrogen evolution reaction.Theoretical calculations imply that the introduction of Mo2C produces a graphene wave structure,which in some senses behaves like N doping to form localized charges.Being an active electrocatalyst,MoNCs demonstrate a Tafel slope as low as 60.6 mV dec-1 and high durability of up to 10 h in acidic media.Besides charge engineering,plentiful defects and hierarchical morphology also contribute to good performance.This work underlines the importance of charge engineering to boost catalytic performance. 展开更多
关键词 Molybdenum carbide NITROGEn-doped carbon nanosheets CHARGE ENGINEERING Graphene wave Hydrogen EVOLUTION reaction
下载PDF
Insight into the mechanism of 5-hydroxymethylfurfural electroreduction to 2,5-bis(hydroxymethyl)furan over Cu anchored N-doped carbon nanosheets
4
作者 Haoran Wu Xinwei Chen +6 位作者 Haishan Xu Runlu Yang Xin Wang Junying Chen Zhenbing Xie Liang Wu Yiyong Mai 《Nano Research》 SCIE EI CSCD 2024年第9期7991-7999,共9页
Design of non-noble metal electrocatalysts for biomass conversion to high-value chemicals and understanding the related catalytic mechanisms are of profound significance but have remained a major challenge.Here,we dev... Design of non-noble metal electrocatalysts for biomass conversion to high-value chemicals and understanding the related catalytic mechanisms are of profound significance but have remained a major challenge.Here,we developed a novel biomass-derived electrocatalyst(denoted as Cu/NC),featuring with electron-deficient copper nanoparticles anchored on N-doped carbon nanosheets,for the electrochemical reduction of 5-hydroxymethylfurfural(HMF)to 2,5-bis(hydroxymethyl)furan(BHMF,a vital precursor of functional polymers).The optimized Cu/NC electrocatalyst exhibited an excellent performance with high Faradaic efficiency(89.5%)and selectivity(90.8%)of BHMF at a low concentration of HMF(18.1 mM).Even at a very high HMF concentration(108.6 mM),the Faraday efficiency and selectivity of BHMF could still reach 74.8%and 81.1%,respectively.This performance approached those of the reported noble metal-based electrocatalysts.Mechanism study revealed that the N doping in the Cu/NC catalyst could regulate the electronic structure of Cu,strengthening the adsorption of the HMF carbonyl group,and thus boosting the selectivity of BHMF.Additionally,strong electronic metal-support interactions of Cu and the N-doped carbon support optimized the charge transfer rate,thus promoting the dissociation of water to the active hydrogen(H^(*))species and boosting the reaction kinetic rate of H^(*)and HMF. 展开更多
关键词 biomass 5-HYDROXYMETHYLFURFURAL electrochemical reduction n-doped carbon materials 2 5-bis(hydroxymethyl)furan
原文传递
(FeO)_(2)FeBO_(3) nanoparticles attached on interconnected nitrogen-doped carbon nanosheets serving as sulfur hosts for lithium-sulfur batteries
5
作者 Junhai Wang Huaqiu Huang +4 位作者 Chen Chen Jiandong Zheng Yaxian Cao Sang Woo Joo Jiarui Huang 《Frontiers of Materials Science》 SCIE CSCD 2024年第2期75-88,共14页
There are still many challenges including low conductivity of cathodes,shuttle effect of polysulfides,and significant volume change of sulfur during cycling to be solved before practical applications of lithium-sulfur... There are still many challenges including low conductivity of cathodes,shuttle effect of polysulfides,and significant volume change of sulfur during cycling to be solved before practical applications of lithium-sulfur(Li-S)batteries.In this work,(FeO)_(2)FeBO_(3) nanoparticles(NPs)anchored on interconnected nitrogen-doped carbon nanosheets(NcNs)were synthesized,serving as sulfur carriers for Li-S batteries to solve such issues.NcNs have the cross-linked network structure,which possess good electrical conductivity,large specific surface area,and abundant micropores and mesopores,enabling the cathode to be well infiltrated and permeated by the electrolyte,ensuring the rapid electron/ion transfer,and alleviating the volume expansion during the electrochemical reaction.In addition,polar(FeO)_(2)FeBO_(3) can enhance the adsorption of polysulfides,effectively alleviating the polysulfide shuttle effect.Under a current density of 1.0 A·g^(-1),the initial discharging and charging specific capacities of the(FeO)_(2)FeBO_(3)@NCNs-2/S electrode were obtained to be 1113.2 and 1098.3mA·h·g^(-1),respectively.After 1000 cycles,its capacity maintained at 436.8 mA·h·g^(-1),displaying a decay rate of 0.08%per cycle.Therefore,combining NCNs with(FeO)_(2)FeBO_(3) NPs is conducive to the performance improvement of Li-S batteries. 展开更多
关键词 (FeO)_(2)FeBO_(3) nitrogen-doped carbon nanosheet cathode lithium-sulfurbattery
原文传递
Unraveling the Role of Nitrogen-Doped Carbon Nanowires Incorporated with MnO_(2)Nanosheets as High Performance Cathode for Zinc-Ion Batteries 被引量:2
6
作者 Xiaohui Li Qiancheng Zhou +5 位作者 Ze Yang Xing Zhou Dan Qiu Huajun Qiu Xintang Huang Ying Yu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第3期205-213,共9页
Manganese-based cathode materials are considered as a promising candidate for rechargeable aqueous zinc-ion batteries(ZIBs).Suffering from poor conductive and limited structure tolerance,various carbon matrix,especial... Manganese-based cathode materials are considered as a promising candidate for rechargeable aqueous zinc-ion batteries(ZIBs).Suffering from poor conductive and limited structure tolerance,various carbon matrix,especially N-doped carbon,were employed to incorporate with MnO_(2)for greatly promoted electrochemical performances.However,the related underlying mechanism is still unknown,which is unfavorable to guide the design of high performance electrode.Herein,by incorporating layered MnO_(2)with N-doped carbon nanowires,a free-standing cathode with hierarchical core-shell structure(denoted as MnO_(2)@NC)is prepared.Benefiting from the N-doped carbon and rational architecture,the MnO_(2)@NC electrode shows an enhanced specific capacity(325 mAh g^(−1)at 0.1 A g^(−1))and rate performance(90 mAh g^(−1)at 2 A g^(−1)),as well as improved cycling stability.Furthermore,the performance improvement mechanism of MnO_(2)incorporated by N-doped carbon is investigated by X-ray photoelectron spectroscopy(XPS),Raman spectrums and density functional theory(DFT)calculation.The N atom elongates the Mn-O bond and reduces the valence of Mn^(4+)ion in MnO_(2)crystal by delocalizing its electron clouds.Thus,the electrostatic repulsion will be weakened when Zn^(2+)/H^(+)insert into the host MnO_(2)lattices,which is profitable to more cation insertion and faster ion transfer kinetics for higher capacity and rate capability.This work elucidates a fundamental understanding of the functions of N-doped carbon in composite materials and shed light on a practical pathway to optimize other electrode materials. 展开更多
关键词 core-shell nanostructure MnO_(2)nanosheets n-doped carbon Zn ion batteries
下载PDF
High-efficiency sodium storage of Co_(0.85)Se/WSe_(2) encapsulated in N-doped carbon polyhedron via vacancy and heterojunction engineering 被引量:2
7
作者 Ya Ru Pei Hong Yu Zhou +5 位作者 Ming Zhao Jian Chen Li Xin Ge Wei Zhang Chun Cheng Yang Qing Jiang 《Carbon Energy》 SCIE EI CAS CSCD 2024年第1期94-107,共14页
With the advantage of fast charge transfer,heterojunction engineering is identified as a viable method to reinforce the anodes'sodium storage performance.Also,vacancies can effectively strengthen the Na+adsorption... With the advantage of fast charge transfer,heterojunction engineering is identified as a viable method to reinforce the anodes'sodium storage performance.Also,vacancies can effectively strengthen the Na+adsorption ability and provide extra active sites for Na+adsorption.However,their synchronous engineering is rarely reported.Herein,a hybrid of Co_(0.85)Se/WSe_(2) heterostructure with Se vacancies and N-doped carbon polyhedron(CoWSe/NCP)has been fabricated for the first time via a hydrothermal and subsequent selenization strategy.Spherical aberration-corrected transmission electron microscopy confirms the phase interface of the Co_(0.85)Se/WSe_(2) heterostructure and the existence of Se vacancies.Density functional theory simulations reveal the accelerated charge transfer and enhanced Na+adsorption ability,which are contributed by the Co_(0.85)Se/WSe_(2) heterostructure and Se vacancies,respectively.As expected,the CoWSe/NCP anode in sodium-ion battery achieves outstanding rate capability(339.6 mAh g^(−1) at 20 A g^(−1)),outperforming almost all Co/W-based selenides. 展开更多
关键词 Co_(0.85)Se/WSe_(2)heterostructure density functional theory simulations n-doped carbon polyhedron Se vacancies sodium-ion batteries
下载PDF
Flame-assisted ultrafast synthesis of functionalized carbon nanosheets for high-performance sodium storage
8
作者 Chen Chen Dong Yan +9 位作者 Yew Von Lim Lei Liu Xue Liang Li Junjie Chen Tian Chen Li Youyu Zhu Jiangtao Cai Ying Huang Yating Zhang Hui Ying Yang 《Carbon Energy》 SCIE EI CAS CSCD 2024年第7期123-133,共11页
The unique structural features of hard carbon(HC)make it a promising anode candidate for sodium-ion batteries(SIB).However,traditional methods of preparing HC require special equipment,long reaction times,and large en... The unique structural features of hard carbon(HC)make it a promising anode candidate for sodium-ion batteries(SIB).However,traditional methods of preparing HC require special equipment,long reaction times,and large energy consumption,resulting in low throughputs and efficiency.In our contribution,a novel synthesis method is proposed,involving the formation of HC nanosheets(NS-CNs)within minutes by creating an anoxic environment through flame combustion and further introducing sulfur and nitrogen sources to achieve heteroatom doping.The effect of heterogeneous element doping on the microstructure of HC is quantitatively analyzed by high-resolution transmission electron microscopy and image processing technology.Combined with density functional theory calculation,it is verified that the functionalized HC exhibits stronger Na^(+)adsorption ability,electron gain ability,and Na^(+)migration ability.As a result,NS-CNs as SIB anodes provide an ultrahigh reversible capacity of 542.7mAh g^(-1) at 0.1Ag^(-1),and excellent rate performance with a reversible capacity of 236.4mAh g^(-1) at 2Ag^(-1) after 1200 cycles.Furthermore,full cell assembled with NS-CNs as the can present 230mAh g^(-1) at 0.5Ag^(-1) after 150 cycles.Finally,in/ex situ techniques confirm that the excellent sodium storage properties of NS-CNs are due to the construction of abundant active sites based on the novel synthesis method for realizing the reversible adsorption of Na^(+).This work provides a novel strategy to develop novel carbons and gives deep insights for the further investigation of facile preparation methods to develop high-performance carbon anodes for alkali-ion batteries. 展开更多
关键词 carbon nanosheets heteroatom doping sodium-ion battery sustainable materials
下载PDF
Enhanced stability of nitrogen-doped carbon-supported palladium catalyst for oxidative carbonylation of phenol
9
作者 Xiaojing Liu Ruohan Zhao +4 位作者 Hao Zhao Zhimiao Wang Fang Li Wei Xue Yanji Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第1期19-28,共10页
Enhancing the stability of supported noble metal catalysts emerges is a major challenge in both science and industry.Herein,a heterogeneous Pd catalyst(Pd/NCF)was prepared by supporting Pd ultrafine metal nanoparticle... Enhancing the stability of supported noble metal catalysts emerges is a major challenge in both science and industry.Herein,a heterogeneous Pd catalyst(Pd/NCF)was prepared by supporting Pd ultrafine metal nanoparticles(NPs)on nitrogen-doped carbon;synthesized by using F127 as a stabilizer,as well as chitosan as a carbon and nitrogen source.The Pd/NCF catalyst was efficient and recyclable for oxidative carbonylation of phenol to diphenyl carbonate,exhibiting higher stability than Pd/NC prepared without F127 addition.The hydrogen bond between chitosan(CTS)and F127 was enhanced by F127,which anchored the N in the free amino group,increasing the N content of the carbon material and ensuring that the support could provide sufficient N sites for the deposition of Pd NPs.This process helped to improve metal dispersion.The increased metal-support interaction,which limits the leaching and coarsening of Pd NPs,improves the stability of the Pd/NCF catalyst.Furthermore,density functional theory calculations indicated that pyridine N stabilized the Pd^(2+)species,significantly inhibiting the loss of Pd^(2+)in Pd/NCF during the reaction process.This work provides a promising avenue towards enhancing the stability of nitrogen-doped carbon-supported metal catalysts. 展开更多
关键词 Supported Pd catalyst n-doped carbon Amphiphilic triblock copolymer Pyridinic nitrogen STABILITY
下载PDF
Oxidation Evolution and Activity Origin of N-Doped Carbon in the Oxygen Reduction Reaction
10
作者 Jiaqi Wu Chuanqi Cheng +2 位作者 Shanshan Lu Bin Zhang Yanmei Shi 《Transactions of Tianjin University》 EI CAS 2024年第4期369-379,共11页
N-doped carbon materials,with their applications as electrocatalysts for the oxygen reduction reaction(ORR),have been extensively studied.However,a negletcted fact is that the operating potential of the ORR is higher ... N-doped carbon materials,with their applications as electrocatalysts for the oxygen reduction reaction(ORR),have been extensively studied.However,a negletcted fact is that the operating potential of the ORR is higher than the theoretical oxida-tion potential of carbon,possibly leading to the oxidation of carbon materials.Consequently,the infl uence of the structural oxidation evolution on ORR performance and the real active sites are not clear.In this study,we discover a two-step oxida-tion process of N-doped carbon during the ORR.The fi rst oxidation process is caused by the applied potential and bubbling oxygen during the ORR,leading to the oxidative dissolution of N and the formation of abundant oxygen-containing functional groups.This oxidation process also converts the reaction path from the four-electron(4e)ORR to the two-electron(2e)ORR.Subsequently,the enhanced 2e ORR generates oxidative H_(2)O_(2),which initiates the second stage of oxidation to some newly formed oxygen-containing functional groups,such as quinones to dicarboxyls,further diversifying the oxygen-containing functional groups and making carboxyl groups as the dominant species.We also reveal the synergistic eff ect of multiple oxygen-containing functional groups by providing additional opportunities to access active sites with optimized adsorption of OOH*,thus leading to high effi ciency and durability in electrocatalytic H_(2)O_(2) production. 展开更多
关键词 Oxygen reduction reaction n-doped carbon Reaction path Structural evolution Oxidation in reduction
下载PDF
Engineering single-atom Mn on nitrogen-doped carbon to regulate lithium-peroxide reaction kinetics for rechargeable lithium-oxygen batteries
11
作者 Yaling Huang Yong Liu +3 位作者 Yang Liu Chenyang Zhang Wenzhang Li Jie Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期199-207,共9页
Precision engineering of catalytic sites to guide more favorable pathways for Li_(2)O_(2) nucleation and decom-position represents an enticing kinetic strategy for mitigating overpotential,enhancing discharge capac-it... Precision engineering of catalytic sites to guide more favorable pathways for Li_(2)O_(2) nucleation and decom-position represents an enticing kinetic strategy for mitigating overpotential,enhancing discharge capac-ity,and improving recycling stability of Li-O_(2) batteries.In this work,we employ metal-organic frameworks(MOFs)derivation and ion substitution strategies to construct atomically dispersed Mn-N_(4) moieties on hierarchical porous nitrogen-doped carbon(Mn SAs-NC)with the aim of reducing the over-potential and improving the cycling stability of Li-O_(2) batteries.The porous structure provides more chan-nels for mass transfer and exposes more highly active sites for electrocatalytic reactions,thus promoting the formation and decomposition of Li_(2)O_(2).The Li-O_(2) batteries with Mn SAs-NC cathode achieve lower overpotential,higher specific capacity(14290 mA h g^(-1) at 100 mAg^(-1)),and superior cycle stability(>100 cycles at 200 mA g^(-1))compared with the Mn NPs-NC and NC.Density functional theory(DFT)cal-culations reveal that the construction of Mn-N_(4) moiety tunes the charge distribution of the pyridinic N-rich vacancy and balances the affinity of the intermediates(LiO_(2) and Li_(2)O_(2)).The initial nucleation of Li_(2)O_(2) on Mn SAs-NC favors the O_(2)-→LiO_(2)→Li_(2)O_(2) surface-adsorption pathway,which mitigates the overpoten-tials of the oxygen reduction(ORR)and oxygen evolution reaction(OER).As a result,Mn SAs-NC with Mn-N_(4) moiety effectively facilitates the Li_(2)O_(2) nucleation and enables its reversible decomposition.This work establishes a methodology for constructing carbon-based electrocatalysts with high activity and selectivity for Li-O_(2)batteries. 展开更多
关键词 Single-atom Mn MOFs-oriented architecture Rechargeable Li-O_(2)battery n-doped carbon Density functional theory calculation
下载PDF
One-pot pyrolysis route to Fe−N-Doped carbon nanosheets with outstanding electrochemical performance as cathode materials for microbial fuel cell 被引量:1
12
作者 Yong Sun Zezhen Zhang +1 位作者 Yongming Sun Gaixiu Yang 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2020年第6期207-214,共8页
The naturally lackadaisical kinetics of oxygen reduction reaction(ORR)in the cathode is one of the important factors that restrict the development of air-cathode microbial fuel cells(MFCs).In this work,the iron-nitrog... The naturally lackadaisical kinetics of oxygen reduction reaction(ORR)in the cathode is one of the important factors that restrict the development of air-cathode microbial fuel cells(MFCs).In this work,the iron-nitrogen-carbon hierarchically nanostructured materials had been successfully fabricated by pyrolyzing glucose,iron chloride,and dicyandiamide with the aim of solving the issue.The obtained catalyst with an ultrathin nanostructure demonstrated an idiosyncratic electrocatalytic activity caused by the high content introduction of nitrogen and iron atoms,large surface area,which will offer sufficient active sites for improving the charge/mass transfer and reducing the diffusion resistance.Furthermore,with the increase of N dopant in the catalyst,better ORR catalytic activity could be achieved.Illustrating the N doping was beneficial to the ORR process.The high content of N,BET surface area caused by the N increasing could be responsible for the superior performance according to results of X-Ray photoelectron spectroscopy(XPS),Raman and Brunner-Emmet-Teller(BET)analysis.The ORR on the Fe-N3/C material follows 4e−pathway,and MFCs equipped with Fe-N3/C catalyst achieved a maximum power density(MPD)of 912 mW/m2,which was 1.1 times of the MPD generated by the commercial Pt/C(830 mW/m2).This research not only provided a feasible way for the fabrication of Pt-free catalyst towards oxygen reduction but also proposed potential cathode catalysts for the development of MFCs. 展开更多
关键词 one-pot pyrolysis route Fe−n-doped carbon nanosheets microbial fuel cells iron-nitrogen co-doping carbon based catalyst electrochemical performance cathode materials
原文传递
Fe/Fe2O3 nanoparticles anchored on Fe-N-doped carbon nanosheets as bifunctional oxygen electrocatalysts for rechargeable zinc-air batteries 被引量:13
13
作者 Yipeng Zang Haimin Zhang +5 位作者 Xian Zhang Rongrong Liu Shengwen Liu Guozhong Wang Yunxia Zhang Huijun Zhao 《Nano Research》 SCIE EI CAS CSCD 2016年第7期2123-2137,共15页
Electrocatalysts with high catalytic activity and stability play a key role in promising renewable energy technologies, such as fuel cells and metal-air batteries. Here, we report the synthesis of Fe/Fe203 nanoparticl... Electrocatalysts with high catalytic activity and stability play a key role in promising renewable energy technologies, such as fuel cells and metal-air batteries. Here, we report the synthesis of Fe/Fe203 nanoparticles anchored on Fe-N-doped carbon nanosheets (Fe/Fe2Og@Fe-N-C) using shrimp shell-derived N-doped carbon nanodots as carbon and nitrogen sources in the presence of FeCI3 by a simple pyrolysis approach. Fe/Fe203@Fe-N-C obtained at a pyrolysis temperature of 1,000 ℃ (Fe/Fe2OB@Fe-N-C-1000) possessed a mesoporous structure and high surface area of 747.3 m2-g-1. As an electrocatalyst, Fe/Fe203@Fe-N-C-1000 exhibited bifunctional electrocatalytic activities toward the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in alkaline media, com- parable to that of commercial Pt/C for ORR and RuO2 for OER, respectively. The Zn-air battery test demonstrated that Fe/Fe2OB@Fe-N-C-1000 had a superior rechargeable performance and cycling stability as an air cathode material with an open drcuit voltage of 1.47 V (vs. Ag/AgCl) and a power density of 193 mW.cm-2 at a current density of 220 mA-cm-2. These performances were better than other commercial catalysts with an open circuit voltage of 1.36 V and a power density of 173 mW-cm^-2 at a current density of 220 mA.cm-2 (a mixture of commercial Pt/C and RuO2 with a mass ratio of 1:1 was used for the rechargeable Zn-air battery measurements). This work will be helpful to design and develop low-cost and abundant bifunctional oxygen electrocatalysts for future metal-air batteries. 展开更多
关键词 n-doped carbon nanodots Fe/Fe2O3@Fe-n-dopedcarbon oxygen reduction reaction oxygen evolution reaction rechargeable zinc-airbattery
原文传递
SnS_2 nanosheets arrays sandwiched by N-doped carbon and TiO_2 for high-performance Na-ion storage 被引量:1
14
作者 Weina Ren Haifeng Zhang +1 位作者 Cao Guan Chuanwei Cheng 《Green Energy & Environment》 SCIE 2018年第1期42-49,共8页
In this paper, SnS_2 nanosheets arrays sandwiched by porous N-doped carbon and TiO_2(TiO_2@SnS_2@N-C) on flexible carbon cloth are prepared and tested as a free-standing anode for high-performance sodium ion batteries... In this paper, SnS_2 nanosheets arrays sandwiched by porous N-doped carbon and TiO_2(TiO_2@SnS_2@N-C) on flexible carbon cloth are prepared and tested as a free-standing anode for high-performance sodium ion batteries. The as-obtained TiO_2@SnS_2@N-C composite delivers a remarkable capacity performance(840 mA h g^(-1) at a current density of 200 mA g^(-1)), excellent rate capability and long-cycling life stability(293 mA h g^(-1) at 1 A g^(-1) after 600 cycles). The excellent electrochemical performance can be attributed to the synergistic effect of each component of the unique hybrid structure, in which the SnS_2 nanosheets with open framworks offer high capacity, while the porous N-doped carbon nanoplates arrays on flexible carbon cloth are able to improve the conductivity and the TiO_2 passivation layer can keep the structure integrity of SnS_2 nanosheets. 展开更多
关键词 Sandwich structure SnS2 nanosheets n-doped carbon TiO2 Sodium-ion battery
下载PDF
Defect-rich and ultrathin nitrogen-doped carbon nanosheets with enhanced peroxidase-like activity for the detection of urease activity and fluoride ion 被引量:1
15
作者 Yu Zhang Lei Jiao +5 位作者 Weiqing Xu Yifeng Chen Yu Wu Hongye Yan Wenling Gu Chengzhou Zhu 《Chinese Chemical Letters》 SCIE CAS CSCD 2022年第3期1317-1320,共4页
Although carbon nanozymes have attracted great interest due to their good biocompatibility, low cost,and high stability, designing high-active carbon nanozymes still faces great challenges. Herein, ultrathin nitrogen-... Although carbon nanozymes have attracted great interest due to their good biocompatibility, low cost,and high stability, designing high-active carbon nanozymes still faces great challenges. Herein, ultrathin nitrogen-doped carbon nanosheets with rich defects(d-NC) were prepared through a high-temperature annealing process, using potassium chloride and ammonium chloride as templates. Owing to the large specific surface area, rich defects and the high exposure of active sites, the proposed d-NC nanozymes exhibited excellent peroxidase-like activity. The d-NC nanozymes possess maximal reaction velocity and their specific activity is 9.4-fold higher than that of nitrogen-doped carbon nanozymes, indicating that the induced defects can boost the catalytic performance. Benefited from the good peroxidase-like activities of d-NC nanozymes, the colorimetric sensing platforms were constructed for the detection of urease activity and fluoride ion, exhibiting satisfactory stability and selectivity. This study not only offers a way to synthesize carbon nanozymes with improved enzyme-like activities but also broadens their applications in colorimetric biosensing. 展开更多
关键词 Nanozymes DEFECTS nanosheets carbon nanomaterials Biosensors
原文传递
A Universal Strategy For N-Doped 2D Carbon Nanosheets With Sub-Nanometer Micropore For High-Performance Supercapacitor 被引量:1
16
作者 Jiangqi Zhou Li Jiang +6 位作者 Chengyong Shu Long Kong Iqbal Ahmad Ya-Nan Zhou Wei Tang Xiaofei Sun Yuping Wu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2021年第4期569-576,共8页
Preparing carbon nanosheets with precise control of open porous morphology via universal process and understanding the relationship between structure and capacitive performance are very urgent for achieving advanced s... Preparing carbon nanosheets with precise control of open porous morphology via universal process and understanding the relationship between structure and capacitive performance are very urgent for achieving advanced supercapacitors.Herein,we propose a simple yet effective additive-free method to transform a bulk layered potassium phthalimide salt to novel nitrogen-doped twodimensional carbon sheets by self-activation during calcination.The obtained samples showed large-sized and flat structure with lateral size around 10μm,uniform sub-nanometer micropore size distribution of about 0.65 nm dimension,large specific surface area up to 2276.7 m^(2)g^(-1),and suitable nitrogen doping.Benefited from these merits,the optimized sample delivers a high specific capacitance of 345 F g^(-1)at 1 A g^(-1)and retains 270 F g^(-1)even at 50 A g^(-1)in6.0 M KOH electrolyte.Remarkably,the symmetric supercapacitor shows maximum energy densities of 16.43 Wh kg^(-1)and 23.6 Wh kg^(-1)in 6.0 M KOH and 1.0 M Na_(2)SO_(4)electrolytes,respectively.Importantly,on account the universality and simplicity of this method,the undoped as-prepared carbon sheet with uniform sub-nanometer micropore distribution can be synthesized from different potassium-containing salts with layered structure,which can be employed as a model for a deep understanding the effect of sub-nanometer micropores on capacitive performances.We find the number of micropores centered at 0.65 nm can be applied as one indicator to clarify the correlation between capacitance and critical pore size below 1 nm. 展开更多
关键词 universal strategy sub-nanometer micropore carbon nanosheet supercapacitors
下载PDF
Highly N-doped carbon with low graphitic-N content as anode material for enhanced initial Coulombic efficiency of lithium-ion batteries 被引量:3
17
作者 Yihua Tang Jingjing Chen +2 位作者 Zhiyong Mao Christina Roth Dajian Wang 《Carbon Energy》 SCIE CSCD 2023年第2期236-249,共14页
N-doped carbons as one of the most prominent anode materials to replace standard graphite exhibit outstanding Li+storage performance.However,N-doped carbon anodes still suffer from low N-doping levels and low initial ... N-doped carbons as one of the most prominent anode materials to replace standard graphite exhibit outstanding Li+storage performance.However,N-doped carbon anodes still suffer from low N-doping levels and low initial Coulombic efficiency(ICE).In this study,high N-doped and low graphitic-N carbons(LGNCs)with enhanced ICE were synthesized by taking advantage of a denitrification strategy for graphitic carbon nitride(g-C_(3)N_(4)).In brief,more than 14.5 at%of N from g-C_(3)N_(4)(55.1 at%N)was retained by reacting graphitic-N with lithium,which was subsequently removed.As graphitic-N is largely responsible for the irreversible capacity,the anode's performance was significantly increased.Compared to general N-doped carbons with high graphitic-N proportion(>50%)and low N content(<15 at%),LGNCs delivered a low proportion of 10.8%-17.2% within the high N-doping content of 14.5-42.7 at%,leading to an enhanced specific capacity of 1499.9mAh g^(-1) at an ICE of 93.7% for the optimal sample of LGNC(4:1).This study provides a facile strategy to control the N content and speciation,achieving both high Li+storage capacity and high ICE,and thus promoting research and application of N-doped carbon materials. 展开更多
关键词 DENITRIFICATION graphitic carbon nitride graphitic-N lithium-ion batteries n-doped carbon
下载PDF
Insight to the enhanced microwave absorption of porous N-doped carbon driven by ZIF-8:Competition between graphitization and porosity 被引量:2
18
作者 You Zhou Hongpeng Wang +7 位作者 Dan Wang Xianfeng Yang Hongna Xing Juan Feng Yan Zong Xiuhong Zhu Xinghua Li Xinliang Zheng 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第3期474-484,共11页
Porous carbon-based materials are promised to be lightweight dielectric microwave absorbents.Deeply understanding the influence of graphitization grade and porous structure on the dielectric parameters is urgently req... Porous carbon-based materials are promised to be lightweight dielectric microwave absorbents.Deeply understanding the influence of graphitization grade and porous structure on the dielectric parameters is urgently required.Herein,utilizing the low boiling point of Zn,porous N-doped carbon was fabricated by carbonization of ZIF-8(Zn)at different temperature,and the microwave absorption performance was investigated.The porous N-doped carbon inherits the high porosity of ZIF-8 precursor.By increasing the carbonization temperature,the contents of Zn and N elements are decreased;the graphitization degree is improved;however,the specific surface area and porosity are increased first and then decreased.When the carbonization temperature is 1000°C,the porous N-doped carbon behaves enhanced microwave absorption.With an ultrathin thickness of 1.29 mm,the ideal RL reaches-50.57 dB at 16.95 GHz and the effective absorption bandwidth is 4.17 GHz.The mechanism of boosted microwave absorption is ascribed to the competition of graphitization and porosity as well as N dopants,resulting in high dielectric loss capacity and good impedance matching.The porous structure can prolong the pathways and raise the contact opportunity between microwaves and porous carbon,causing multiple scattering,interface polarization,and improved impedance matching.Besides,the N dopants can induce electron polarization and defect polarization.These results give a new insight to construct lightweight carbon-based microwave absorbents by regulating the graphitization and porosity. 展开更多
关键词 n-doped carbon POROSITY dielectric impedance matching microwave absorption
下载PDF
Boosting the catalytic activity toward oxygen reduction via a heterostructure of porous iron oxide-decorated 2D NiO/NG nanosheets
19
作者 Kakali Maiti Matthew T.Curnan +2 位作者 Hyung Jun Kim Kyeounghak Kim Jeong Woo Han 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期669-681,I0016,共14页
As a noble metal substitute,two-dimensional(2D)hierarchical nano-frame structures have attracted great interest as candidate catalysts due to their remarkable advantages-high intrinsic activity,high electron mobility,... As a noble metal substitute,two-dimensional(2D)hierarchical nano-frame structures have attracted great interest as candidate catalysts due to their remarkable advantages-high intrinsic activity,high electron mobility,and straightforward surface functionalization.Therefore,they may replace Pt-based catalysts in oxygen reduction reaction(ORR)applications.Herein,a simple method is developed to design hierarchical nano-frame structures assembled via 2D NiO and N-doped graphene(NG)nanosheets.This procedure can yield nanostructures that satisfy the criteria correlated with improved electrocatalytic performance,such as large surface area,numerous undercoordinated atoms,and high defect densities.Further,porous NG nanosheet architectures,featuring NiO nanosheets densely coordinated with accessible holey Fe_(2)O_(3) moieties,can enhance mesoporosity and balance hydrophilicity.Such improvements can facilitate charge transport and expose formerly inaccessible reaction sites,maximizing active site density utilization.Density functional theory(DFT)calculations reveal favored O_(2) adsorption and dissociation on Fe_(2)O_(3) hybrid structures when supported by 2D NiO and NG nanomaterials,given 2D materials donated charge to Fe_(2)O_(3) active sites.Our systematic studies reveal that synergistic contributions are responsible for enriching the catalytic activity of Fe_(2)O_(3)@NiO/NG in alkaline media-encompassing internal voids and pores,unique hierarchical support structures,and concentrated N-dopant and bimetallic atomic interactions.Ultimately,this work expands the toolbox for designing and synthesizing highly efficient 2D/2D shelled functional nanomaterials with transition metals,endeavoring to benefit energy conversion and related ORR applications. 展开更多
关键词 n-doped graphene Holey Fe_(2)O_(3)nanocrystals NiO nanosheets High catalytic performance ORR
下载PDF
Customization of FeNi alloy nanosheet arrays inserted with biomass-derived carbon templates for boosted electromagnetic wave absorption
20
作者 Xuanqi Yang Honghan Wang +5 位作者 Jing Chen Qingda An Zuoyi Xiao Jingai Hao Shangru Zhai Junye Sheng 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第4期812-824,共13页
Electromagnetic wave(EMW)-absorbing materials have considerable capacity in the military field and the prevention of EMW radiation from harming human health.However,obtaining lightweight,high-performance,and broadband... Electromagnetic wave(EMW)-absorbing materials have considerable capacity in the military field and the prevention of EMW radiation from harming human health.However,obtaining lightweight,high-performance,and broadband EMW-absorbing material remains an overwhelming challenge.Creating dielectric/magnetic composites with customized structures is a strategy with great promise for the development of high-performance EMW-absorbing materials.Using layered double hydroxides as the precursors of bimetallic alloys and combining them with porous biomass-derived carbon materials is a potential way for constructing multi-interface heterostructures as efficient EMW-absorbing materials because they have synergistic losses,low costs,abundant resources,and light weights.Here,FeNi alloy nanosheet array/Lycopodium spore-derived carbon(FeNi/LSC)was prepared through a simple hydrothermal and carbonization method.FeNi/LSC presents ideal EMW-absorbing performance by benefiting from the FeNi alloy nanosheet array,sponge-like structure,capability for impedance matching,and improved dielectric/magnetic losses.As expected,FeNi/LSC exhibited the minimum reflection loss of-58.3 dB at 1.5 mm with 20wt%filler content and a widely effective absorption bandwidth of 4.92 GHz.FeNi/LSC composites with effective EMW-absorbing performance provide new insights into the customization of biomass-derived composites as high-performance and lightweight broadband EMW-absorbing materials. 展开更多
关键词 spore-derived carbon FeNi alloy nanosheet array multi-interface heterostructures synergistic effect efficient electromagnet-ic wave absorption
下载PDF
上一页 1 2 23 下一页 到第
使用帮助 返回顶部