期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
N-doped graphene quantum dot-decorated N-TiO2/P-doped porous hollow g-C_(3)N_(4) nanotube composite photocatalysts for antibiotic photodegradation and H2 production 被引量:2
1
作者 Jingshu Yuan Yao Zhang +2 位作者 Xiaoyan Zhang Junjie Zhang Shen’gen Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CSCD 2024年第1期165-178,共14页
Exclusive responsiveness to ultraviolet light (~3.2 eV) and high photogenerated charge recombination rate are the two primary drawbacks of pure TiO_(2). We combined N-doped graphene quantum dots (N-GQDs), morphology r... Exclusive responsiveness to ultraviolet light (~3.2 eV) and high photogenerated charge recombination rate are the two primary drawbacks of pure TiO_(2). We combined N-doped graphene quantum dots (N-GQDs), morphology regulation, and heterojunction construction strategies to synthesize N-GQD/N-doped TiO_(2)/P-doped porous hollow g-C_(3)N_(4) nanotube (PCN) composite photocatalysts (denoted as G-TPCN). The optimal sample (G-TPCN doped with 0.1wt% N-GQD, denoted as 0.1% G-TPCN) exhibits significantly enhanced photoabsorption, which is attributed to the change in bandgap caused by elemental doping (P and N), the improved light-harvesting resulting from the tube structure, and the upconversion effect of N-GQDs. In addition, the internal charge separation and transfer capability of0.1% G-TPCN are dramatically boosted, and its carrier concentration is 3.7, 2.3, and 1.9 times that of N-TiO_(2), PCN, and N-TiO_(2)/PCN(TPCN-1), respectively. This phenomenon is attributed to the formation of Z-scheme heterojunction between N-TiO_(2) and PCNs, the excellent electron conduction ability of N-GQDs, and the short transfer distance caused by the porous nanotube structure. Compared with those of N-TiO_(2), PCNs, and TPCN-1, the H2 production activity of 0.1%G-TPCN under visible light is enhanced by 12.4, 2.3, and 1.4times, respectively, and its ciprofloxacin (CIP) degradation rate is increased by 7.9, 5.7, and 2.9 times, respectively. The optimized performance benefits from excellent photoresponsiveness and improved carrier separation and migration efficiencies. Finally, the photocatalytic mechanism of 0.1% G-TPCN and five possible degradation pathways of CIP are proposed. This study clarifies the mechanism of multiple modification strategies to synergistically improve the photocatalytic performance of 0.1% G-TPCN and provides a potential strategy for rationally designing novel photocatalysts for environmental remediation and solar energy conversion. 展开更多
关键词 n-doped TiO_(2) n-doped graphene quantum dots P-doped g-C_(3)N_(4) porous hollow nanotube heterojunction photocatalysis
下载PDF
Layered MoS2@graphene functionalized with nitrogen-doped graphene quantum dots as an enhanced electrochemical hydrogen evolution catalyst 被引量:4
2
作者 Tong Guo Lina Wang +6 位作者 Sen Sun Yan Wang Xiaoling Chen Kangning Zhang Dongxia Zhang Zhonghua Xue Xibin Zhou 《Chinese Chemical Letters》 SCIE CAS CSCD 2019年第6期1253-1260,共8页
A novel three-dimensional (3D) layered MoS2@graphene functionalized with nitrogen-doped graphene quantum dots (MoS2@N-GQDs-GR) composites as an enhanced electrochemical hydrogen evolution catalyst. The few layered MoS... A novel three-dimensional (3D) layered MoS2@graphene functionalized with nitrogen-doped graphene quantum dots (MoS2@N-GQDs-GR) composites as an enhanced electrochemical hydrogen evolution catalyst. The few layered MoS2 nanoflowers supported on N-GQDs-GR surface were elaborately fabricated by one-pot hydrothermal method, which MoS2 and N-GQDs-GR exist in a bonding manner of Mo-N. In addition, due to the layered MoS2 sheet edge exposes more hydrogen evolution active sites and N-GQDs-GR have high conductivity, the composites exhibit prominent electrocatalytic activity with a low overpotential 99 mV, a small Tafel slope 49.3 mV/dec. Therefore, that the current work will develop HER catalysts may replace Pt. 展开更多
关键词 n-doped graphene quantum dots graphene Molybdenum DISULFIDE CATALYST Hydrogen evolution reaction
原文传递
Functionalization of nitrogen-doped graphene quantum dot:A sustainable carbon-based catalyst for the production of cyclic carbonate from epoxide and CO_(2) 被引量:1
3
作者 Zahra Eshaghi Gorji Abbas Ali Khodadadi +3 位作者 Siavash Riahi Timo Repo Yadollah Mortazavi Marianna Kemell 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2023年第4期408-422,共15页
A series of organic compounds were successfully immobilized on an N-doped graphene quantum dot (N-GQD) to prepare a multifunctional organocatalyst for coupling reaction between CO_(2)and propylene oxide (PO).The simul... A series of organic compounds were successfully immobilized on an N-doped graphene quantum dot (N-GQD) to prepare a multifunctional organocatalyst for coupling reaction between CO_(2)and propylene oxide (PO).The simultaneous presence of halide ions in conjunction with acidic-and basic-functional groups on the surface of the nanoparticles makes them highly active for the production of propylene carbonate (PC).The effects of variables such as catalyst loading,reaction temperature,and structure of substituents are discussed.The proposed catalysts were characterized by different techniques,including Fourier transform infrared spectroscopy (FTIR),field emission scanning electron microscopy/energy dispersive X-ray microanalysis (FESEM/EDX),thermogravimetric analysis (TGA),elemental analysis,atomic force microscopy (AFM),and ultraviolet–visible (UV-Vis) spectroscopy.Under optimal reaction conditions,3-bromopropionic acid (BPA) immobilized on N-GQD showed a remarkable activity,affording the highest yield of 98%at 140℃ and 106Pa without any co-catalyst or solvent.These new metal-free catalysts have the advantage of easy separation and reuse several times.Based on the experimental data,a plausible reaction mechanism is suggested,where the hydrogen bonding donors and halogen ion can activate the epoxide,and amine functional groups play a vital role in CO_(2)adsorption. 展开更多
关键词 Heterogeneous organocatalyst CO_(2) Propylene carbonate n-doped graphene quantum dot Nanomaterials
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部