A dynamics-based adaptive control approach is proposed for a planar dual-arm space robot in the presence of closed-loop constraints and uncertain inertial parameters of the payload. The controller is capable of contro...A dynamics-based adaptive control approach is proposed for a planar dual-arm space robot in the presence of closed-loop constraints and uncertain inertial parameters of the payload. The controller is capable of controlling the po- sition and attitude of both the satellite base and the payload grasped by the manipulator end effectors. The equations of motion in reduced-order form for the constrained system are derived by incorporating the constraint equations in terms of accelerations into Kane's equations of the unconstrained system. Model analysis shows that the resulting equations perfectly meet the requirement of adaptive controller design. Consequently, by using an indirect approach, an adaptive control scheme is proposed to accomplish position/attitude trajectory tracking control with the uncertain parameters be- ing estimated on-line. The actuator redundancy due to the closed-loop constraints is utilized to minimize a weighted norm of the joint torques. Global asymptotic stability is proven by using Lyapunov's method, and simulation results are also presented to demonstrate the effectiveness of the proposed approach.展开更多
To improve the penetrating ability and the welding quality of keyhole plasma arc welding, a novel penetration closed loop control system was established. In the system, welding current and plasma gas flow rate were se...To improve the penetrating ability and the welding quality of keyhole plasma arc welding, a novel penetration closed loop control system was established. In the system, welding current and plasma gas flow rate were selected as adjusting variables. The wavelet method was used to detect penetration status from welding arc voltage in real time. The control strategy of one keyhole per pulse was adapted to fulfill stable and high quality welding process. Experimental results show that the developed system can apparently increase the penetrating force of plasma arc and keyhole plasma arc welding is realized successfully in stainless steel with 10 mm in thickness. Moreover, the disturbances of gradual change and break change from 3 mm to 6 mm in thickness are come over due to the good response property of the developed system.展开更多
Objective: To evaluate the efficiency of an implanted chip system for the control of heart rate (HR). Methods: The HR was recorded in six conscious Sprague-Dawley (SD) rats. An implanted chip system was designed...Objective: To evaluate the efficiency of an implanted chip system for the control of heart rate (HR). Methods: The HR was recorded in six conscious Sprague-Dawley (SD) rats. An implanted chip system was designed to regulate the HR by stimulating the right cervical vagus nerve according to the feedback of real time HR. Each rat was subjected to 30-min regulation and 30-min recovery. The change of HR during the regulation period was compared with the control. The ECG was recorded during the experiment for 24 h. Results: The ECG signals were successfully recorded during the experiment. The HR was significantly decreased during the period of regulation compared with control (-79.3 ± 34.5, P 〈 0.01, n = 6) and then recovered to normal after regulation. Conclusion: The described implanted chip system can regulate the HR to a designated set point.展开更多
An open-plus-closed-loop (OPCL) control problem for the chaotic motion of a 3D rigid pendulum subjected to a constant gravitationM force is studied. The 3D rigid pendulum is assumed to be consist of a rigid body sup...An open-plus-closed-loop (OPCL) control problem for the chaotic motion of a 3D rigid pendulum subjected to a constant gravitationM force is studied. The 3D rigid pendulum is assumed to be consist of a rigid body supported by a fixed and frictionless pivot with three rotational degrees. In order to avoid the singular phenomenon of Euler's angular velocity equation, the quaternion kinematic equation is used to describe the motion of the 3D rigid pendulum. An OPCL controller for chaotic motion of a 3D rigid pendulum at equilibrium position is designed. This OPCL controller contains two parts: the open-loop part to construct an ideal trajectory and the closed-loop part to stabilize the 3D rigid pendulum. Simulation results show that the controller is effective and efficient.展开更多
A type of single neuron adaptive PID regulator with auto-tuning gain is proposed and applied to the work control of fans, waterpumps and air-pressers etc. in Handan Iron & Steel Compel China. The robusthess of ind...A type of single neuron adaptive PID regulator with auto-tuning gain is proposed and applied to the work control of fans, waterpumps and air-pressers etc. in Handan Iron & Steel Compel China. The robusthess of induStrial parameter closed-loop process controlsystems is improved, and the work quality of the systems bettered.展开更多
In order to study the factors that influence the air fuel ratio(A/F), the amplitude and frequency of A/F fluctuation, to reform the control strategy, and to improve the efficiency of three way catalyst(TWC), a model...In order to study the factors that influence the air fuel ratio(A/F), the amplitude and frequency of A/F fluctuation, to reform the control strategy, and to improve the efficiency of three way catalyst(TWC), a model of closed loop control system including the engine, air fuel mixing and transportation, oxygen sensor and controller, etc., is developed. Various factors that influence the A/F control are studied by simulation. The simulation results show that the reference voltage of oxygen sensor will influence the mean value of A/F ratio, the controller parameters will influence the amplitude of A/F fluctuation, and the operating conditions of the engine determine the frequency of A/F fluctuations, the amplitude of A/F fluctuation can be reduced to within demanded values by logical selection of the signal acquisition method and controller parameters. Higher A/F fluctuation frequency under high speed and load can be reduced through software delay in the controller. The A/F closed loop control system based on the simulation results, accompanied with a rare earth element TWC, gives a better efficiency of conversion against harmful emissions.展开更多
In order to improve the steady state performance,dynamic response and power factor of traditional power factor correction(PFC)digital control method and reduce the harmonic distortion of input current,a double closed ...In order to improve the steady state performance,dynamic response and power factor of traditional power factor correction(PFC)digital control method and reduce the harmonic distortion of input current,a double closed loop active power factorcorrection(APFC)control method with feed-forward is proposed.Firstly,the small signal model of Boost PFC control systemis built and the system transfer function is deduced,and then the parameters of the main device with Boost topology is estimated.By means of the feed-forward,the system can quickly respond to the change in input voltage.Furthermore,the use ofvoltage loop and current loop can achieve input current and output voltage regulation Simulink modeling shows that this methodcan effectively control the output voltage in case of input voltage largely fluctuating,improve the system dynamic response abilityand input power factor,and reduce the input current harmonic distortion展开更多
In this paper, we propose a smart step closed-loop power control (SSPC) algorithm and a base station assignment method based on minimizing the transmitter power (BSA-MTP) technique in a direct sequence-code division m...In this paper, we propose a smart step closed-loop power control (SSPC) algorithm and a base station assignment method based on minimizing the transmitter power (BSA-MTP) technique in a direct sequence-code division multiple access (DS-CDMA) receiver with frequency-selective Rayleigh fading. This receiver consists of three stages. In the first stage, with constrained least mean squared (CLMS) algorithm, the desired users’ signal in an arbitrary path is passed and the inter-path interference (IPI) is reduced in other paths in each RAKE finger. Also in this stage, the multiple access interference (MAI) from other users is reduced. Thus, the matched filter (MF) can use for more reduction of the IPI and MAI in each RAKE finger in the second stage. Also in the third stage, the output signals from the matched filters are combined according to the conventional maximal ratio combining (MRC) principle and then are fed into the decision circuit of the desired user. The simulation results indicate that the SSPC algorithm and the BSA-MTP technique can significantly reduce the network bit error rate (BER) compared to the other methods. Also, we observe that significant savings in total transmit power (TTP) are possible with our methods.展开更多
There have been a large number of accidents at level crossings of railways and this has been considered to be a significant issue to be solved for the realization of safe and stable railway transport.A conventional le...There have been a large number of accidents at level crossings of railways and this has been considered to be a significant issue to be solved for the realization of safe and stable railway transport.A conventional level crossing control system is characterized by the use of two types of electronic train detectors;one detects a train approaching to a level crossing section and the other then detects the train having left the level crossing.By contrast,closed-loop level crossing control systems in which level crossing control equipment and train-borne equipment communicate with each other have been advocated and are expected to serve as an effective solution to the abovementioned issue.This paper describes the following three types of closed-loop level crossing control systems:decentralized level crossing control system,fully-centralized comprehensive level crossing control system and fully-centralized individual level crossing control system.This paper then assesses the safety of these systems in comparison to the conventional level crossing control system.For the purpose of the assessment of their safety,a new accident analysis model called STAMP(systems theoretic accident model and processes)that is suitable for software intensive systems is used to clarify the advantage of the proposed three types of level crossing control systems in terms of safety.展开更多
This paper explores the model reference adaptive control problem for a class of switched linear systems under arbitrary switching with no need for the measurability of the system state.Based on the state of reference ...This paper explores the model reference adaptive control problem for a class of switched linear systems under arbitrary switching with no need for the measurability of the system state.Based on the state of reference model and the measurable output error, adaptive laws and controllers are designed for switched systems.Each subsystem may have its individual reference model and controller, which increases the design flexibility.The introduction of the closed-loop reference model is to get a better transient performance of the whole switched systems.A numerical example is provided to verify the effectiveness of the main results.展开更多
The interference reduction capability of antenna arrays and the power control algorithms have been considered separately as means to decrease the interference in wireless communication networks. In this paper, we prop...The interference reduction capability of antenna arrays and the power control algorithms have been considered separately as means to decrease the interference in wireless communication networks. In this paper, we propose smart step closed-loop power control (SSPC) algorithm in wireless networks in a 2D urban environment with constrained least mean squared (CLMS) algorithm. This algorithm is capable of efficiently adapting according to the environment and able to permanently maintain the chosen frequency response in the look direction while minimizing the output power of the array. Also, we present switched-beam (SB) technique for enhancing signal to interference plus noise ratio (SINR) in wireless networks. Also, we study an analytical approach for the evaluation of the impact of power control error (PCE) on wireless networks in a 2D urban environment. The simulation results indicate that the convergence speed of the SSPC algorithm is faster than other algorithms. Also, we observe that significant saving in total transmit power (TTP) are possible with our proposed algorithm. Finally, we discuss three parameters of the PCE, number of antenna elements, and path-loss exponent and their effects on capacity of the system via some computer simulations.展开更多
The closed loop control model was built up for compensating the springback and enhancing the work piece precision.A coupled closed loop algorithm and a finite element method were developed to simulate and correct the ...The closed loop control model was built up for compensating the springback and enhancing the work piece precision.A coupled closed loop algorithm and a finite element method were developed to simulate and correct the springback of incremental sheet forming.A three-dimensional finite element model was established for simulation of springback in incremental sheet forming process.The closed loop algorithm of trajectory profile for the incremental sheet forming based on the wavelet transform combined with fast Fourier transform was constructed.The profile of processing tool path of shallow dishing with spherical surface was designed on the basis of the profile correction algorithm.The result shows that the algorithm can predict an ideal profile of processing track,and the springback error of incremental sheet forming is eliminated effectively.It has good convergence efficiency,and can improve the workpiece dimensional accuracy greatly.展开更多
The existing theories for closed loop identification with the linear feedback controller are very mature.To apply the existed theories directly in the control field,we propose a new idea about replacing the original u...The existing theories for closed loop identification with the linear feedback controller are very mature.To apply the existed theories directly in the control field,we propose a new idea about replacing the original unknown and nonlinear feedback controller with one approximated linear controller,while guaranteeing the equivalent property for the obtained closed loop system.Based on some statistical correlation functions,one condition is derived to show the equivalent property between the approximated linear controller and the original nonlinear controller.The detailed explicit form,corresponding to the approximated linear controller,is also constructed.Furthermore,to give a complete analysis for closed loop identification,the cost function is rewritten as one extended expression,being convenient to understand.Then spectral estimation is introduced to identify the unknown plant in the closed loop system.Finally,the proposed theories are verified by one simulation example.展开更多
In recent years, the coal safety has been become the urgent problem in China,and severe and fatal coal mine accidents occurred frequently.Must pay attention to coal safety management immediately, because the coal mine...In recent years, the coal safety has been become the urgent problem in China,and severe and fatal coal mine accidents occurred frequently.Must pay attention to coal safety management immediately, because the coal mine accidents not only caused serious economic losses to the country and people but also had negative impact on the society and politics.A closed loop management system was put forward to build to improve the coal safety management.The closed loop management system was formed four parts,identifying the hazard sources, classifying the hidden troubles hazard sources, the risk prealarm and risk control, and the evaluation system.展开更多
With a focus on an industrial multivariable system, two subsystems including the flow and the level outputs are analysed and controlled, which have applicability in both real and academic environments. In such a case,...With a focus on an industrial multivariable system, two subsystems including the flow and the level outputs are analysed and controlled, which have applicability in both real and academic environments. In such a case, at first, each subsystem is distinctively represented by its model, since the outcomes point out that the chosen models have the same behavior as corresponding ones. Then, the industrial multivariable system and its presentation are achieved in line with the integration of these subsystems, since the interaction between them can not actually be ignored. To analyze the interaction presented, the Gershgorin bands need to be acquired, where the results are used to modify the system parameters to appropriate values. Subsequently, in the view of modeling results, the control concept in two different techniques including sequential loop closing control(SLCC) scheme and diagonal dominance control(DDC) schemes is proposed to implement on the system through the Profibus network, as long as the OPC(OLE for process control) server is utilized to communicate between the control schemes presented and the multivariable system. The real test scenarios are carried out and the corresponding outcomes in their present forms are acquired. In the same way, the proposed control schemes results are compared with each other, where the real consequences verify the validity of them in the field of the presented industrial multivariable system control.展开更多
基金supported by the National Natural Science Foundation of China(11272027)
文摘A dynamics-based adaptive control approach is proposed for a planar dual-arm space robot in the presence of closed-loop constraints and uncertain inertial parameters of the payload. The controller is capable of controlling the po- sition and attitude of both the satellite base and the payload grasped by the manipulator end effectors. The equations of motion in reduced-order form for the constrained system are derived by incorporating the constraint equations in terms of accelerations into Kane's equations of the unconstrained system. Model analysis shows that the resulting equations perfectly meet the requirement of adaptive controller design. Consequently, by using an indirect approach, an adaptive control scheme is proposed to accomplish position/attitude trajectory tracking control with the uncertain parameters be- ing estimated on-line. The actuator redundancy due to the closed-loop constraints is utilized to minimize a weighted norm of the joint torques. Global asymptotic stability is proven by using Lyapunov's method, and simulation results are also presented to demonstrate the effectiveness of the proposed approach.
文摘To improve the penetrating ability and the welding quality of keyhole plasma arc welding, a novel penetration closed loop control system was established. In the system, welding current and plasma gas flow rate were selected as adjusting variables. The wavelet method was used to detect penetration status from welding arc voltage in real time. The control strategy of one keyhole per pulse was adapted to fulfill stable and high quality welding process. Experimental results show that the developed system can apparently increase the penetrating force of plasma arc and keyhole plasma arc welding is realized successfully in stainless steel with 10 mm in thickness. Moreover, the disturbances of gradual change and break change from 3 mm to 6 mm in thickness are come over due to the good response property of the developed system.
基金supported by grant from National Nature Science Found (30670767)
文摘Objective: To evaluate the efficiency of an implanted chip system for the control of heart rate (HR). Methods: The HR was recorded in six conscious Sprague-Dawley (SD) rats. An implanted chip system was designed to regulate the HR by stimulating the right cervical vagus nerve according to the feedback of real time HR. Each rat was subjected to 30-min regulation and 30-min recovery. The change of HR during the regulation period was compared with the control. The ECG was recorded during the experiment for 24 h. Results: The ECG signals were successfully recorded during the experiment. The HR was significantly decreased during the period of regulation compared with control (-79.3 ± 34.5, P 〈 0.01, n = 6) and then recovered to normal after regulation. Conclusion: The described implanted chip system can regulate the HR to a designated set point.
基金supported by the National Natural Science Foundation of China(No.11072038)the Municipal Key Programs of Natural Science Foundation of Beijing(No.KZ201110772039)
文摘An open-plus-closed-loop (OPCL) control problem for the chaotic motion of a 3D rigid pendulum subjected to a constant gravitationM force is studied. The 3D rigid pendulum is assumed to be consist of a rigid body supported by a fixed and frictionless pivot with three rotational degrees. In order to avoid the singular phenomenon of Euler's angular velocity equation, the quaternion kinematic equation is used to describe the motion of the 3D rigid pendulum. An OPCL controller for chaotic motion of a 3D rigid pendulum at equilibrium position is designed. This OPCL controller contains two parts: the open-loop part to construct an ideal trajectory and the closed-loop part to stabilize the 3D rigid pendulum. Simulation results show that the controller is effective and efficient.
文摘A type of single neuron adaptive PID regulator with auto-tuning gain is proposed and applied to the work control of fans, waterpumps and air-pressers etc. in Handan Iron & Steel Compel China. The robusthess of induStrial parameter closed-loop process controlsystems is improved, and the work quality of the systems bettered.
文摘In order to study the factors that influence the air fuel ratio(A/F), the amplitude and frequency of A/F fluctuation, to reform the control strategy, and to improve the efficiency of three way catalyst(TWC), a model of closed loop control system including the engine, air fuel mixing and transportation, oxygen sensor and controller, etc., is developed. Various factors that influence the A/F control are studied by simulation. The simulation results show that the reference voltage of oxygen sensor will influence the mean value of A/F ratio, the controller parameters will influence the amplitude of A/F fluctuation, and the operating conditions of the engine determine the frequency of A/F fluctuations, the amplitude of A/F fluctuation can be reduced to within demanded values by logical selection of the signal acquisition method and controller parameters. Higher A/F fluctuation frequency under high speed and load can be reduced through software delay in the controller. The A/F closed loop control system based on the simulation results, accompanied with a rare earth element TWC, gives a better efficiency of conversion against harmful emissions.
基金National Natural Science Foundation of China(No.61261029)
文摘In order to improve the steady state performance,dynamic response and power factor of traditional power factor correction(PFC)digital control method and reduce the harmonic distortion of input current,a double closed loop active power factorcorrection(APFC)control method with feed-forward is proposed.Firstly,the small signal model of Boost PFC control systemis built and the system transfer function is deduced,and then the parameters of the main device with Boost topology is estimated.By means of the feed-forward,the system can quickly respond to the change in input voltage.Furthermore,the use ofvoltage loop and current loop can achieve input current and output voltage regulation Simulink modeling shows that this methodcan effectively control the output voltage in case of input voltage largely fluctuating,improve the system dynamic response abilityand input power factor,and reduce the input current harmonic distortion
文摘In this paper, we propose a smart step closed-loop power control (SSPC) algorithm and a base station assignment method based on minimizing the transmitter power (BSA-MTP) technique in a direct sequence-code division multiple access (DS-CDMA) receiver with frequency-selective Rayleigh fading. This receiver consists of three stages. In the first stage, with constrained least mean squared (CLMS) algorithm, the desired users’ signal in an arbitrary path is passed and the inter-path interference (IPI) is reduced in other paths in each RAKE finger. Also in this stage, the multiple access interference (MAI) from other users is reduced. Thus, the matched filter (MF) can use for more reduction of the IPI and MAI in each RAKE finger in the second stage. Also in the third stage, the output signals from the matched filters are combined according to the conventional maximal ratio combining (MRC) principle and then are fed into the decision circuit of the desired user. The simulation results indicate that the SSPC algorithm and the BSA-MTP technique can significantly reduce the network bit error rate (BER) compared to the other methods. Also, we observe that significant savings in total transmit power (TTP) are possible with our methods.
文摘There have been a large number of accidents at level crossings of railways and this has been considered to be a significant issue to be solved for the realization of safe and stable railway transport.A conventional level crossing control system is characterized by the use of two types of electronic train detectors;one detects a train approaching to a level crossing section and the other then detects the train having left the level crossing.By contrast,closed-loop level crossing control systems in which level crossing control equipment and train-borne equipment communicate with each other have been advocated and are expected to serve as an effective solution to the abovementioned issue.This paper describes the following three types of closed-loop level crossing control systems:decentralized level crossing control system,fully-centralized comprehensive level crossing control system and fully-centralized individual level crossing control system.This paper then assesses the safety of these systems in comparison to the conventional level crossing control system.For the purpose of the assessment of their safety,a new accident analysis model called STAMP(systems theoretic accident model and processes)that is suitable for software intensive systems is used to clarify the advantage of the proposed three types of level crossing control systems in terms of safety.
基金Sponsored by the National Natural Science Foundation of China(Grant No.61233002)the 111 Project(Grant No.B16009)the IAPI Fundamental Research Funds(Grant No.2013ZCX03-01)
文摘This paper explores the model reference adaptive control problem for a class of switched linear systems under arbitrary switching with no need for the measurability of the system state.Based on the state of reference model and the measurable output error, adaptive laws and controllers are designed for switched systems.Each subsystem may have its individual reference model and controller, which increases the design flexibility.The introduction of the closed-loop reference model is to get a better transient performance of the whole switched systems.A numerical example is provided to verify the effectiveness of the main results.
文摘The interference reduction capability of antenna arrays and the power control algorithms have been considered separately as means to decrease the interference in wireless communication networks. In this paper, we propose smart step closed-loop power control (SSPC) algorithm in wireless networks in a 2D urban environment with constrained least mean squared (CLMS) algorithm. This algorithm is capable of efficiently adapting according to the environment and able to permanently maintain the chosen frequency response in the look direction while minimizing the output power of the array. Also, we present switched-beam (SB) technique for enhancing signal to interference plus noise ratio (SINR) in wireless networks. Also, we study an analytical approach for the evaluation of the impact of power control error (PCE) on wireless networks in a 2D urban environment. The simulation results indicate that the convergence speed of the SSPC algorithm is faster than other algorithms. Also, we observe that significant saving in total transmit power (TTP) are possible with our proposed algorithm. Finally, we discuss three parameters of the PCE, number of antenna elements, and path-loss exponent and their effects on capacity of the system via some computer simulations.
基金Project(50175034) supported by the National Natural Science Foundation of China
文摘The closed loop control model was built up for compensating the springback and enhancing the work piece precision.A coupled closed loop algorithm and a finite element method were developed to simulate and correct the springback of incremental sheet forming.A three-dimensional finite element model was established for simulation of springback in incremental sheet forming process.The closed loop algorithm of trajectory profile for the incremental sheet forming based on the wavelet transform combined with fast Fourier transform was constructed.The profile of processing tool path of shallow dishing with spherical surface was designed on the basis of the profile correction algorithm.The result shows that the algorithm can predict an ideal profile of processing track,and the springback error of incremental sheet forming is eliminated effectively.It has good convergence efficiency,and can improve the workpiece dimensional accuracy greatly.
文摘The existing theories for closed loop identification with the linear feedback controller are very mature.To apply the existed theories directly in the control field,we propose a new idea about replacing the original unknown and nonlinear feedback controller with one approximated linear controller,while guaranteeing the equivalent property for the obtained closed loop system.Based on some statistical correlation functions,one condition is derived to show the equivalent property between the approximated linear controller and the original nonlinear controller.The detailed explicit form,corresponding to the approximated linear controller,is also constructed.Furthermore,to give a complete analysis for closed loop identification,the cost function is rewritten as one extended expression,being convenient to understand.Then spectral estimation is introduced to identify the unknown plant in the closed loop system.Finally,the proposed theories are verified by one simulation example.
基金Supported by the Research Fund for the Doctoral Program of Higher Education of China(20090095110001)the Ministry of Education Humanities and Social Science(08JA630083)
文摘In recent years, the coal safety has been become the urgent problem in China,and severe and fatal coal mine accidents occurred frequently.Must pay attention to coal safety management immediately, because the coal mine accidents not only caused serious economic losses to the country and people but also had negative impact on the society and politics.A closed loop management system was put forward to build to improve the coal safety management.The closed loop management system was formed four parts,identifying the hazard sources, classifying the hidden troubles hazard sources, the risk prealarm and risk control, and the evaluation system.
文摘With a focus on an industrial multivariable system, two subsystems including the flow and the level outputs are analysed and controlled, which have applicability in both real and academic environments. In such a case, at first, each subsystem is distinctively represented by its model, since the outcomes point out that the chosen models have the same behavior as corresponding ones. Then, the industrial multivariable system and its presentation are achieved in line with the integration of these subsystems, since the interaction between them can not actually be ignored. To analyze the interaction presented, the Gershgorin bands need to be acquired, where the results are used to modify the system parameters to appropriate values. Subsequently, in the view of modeling results, the control concept in two different techniques including sequential loop closing control(SLCC) scheme and diagonal dominance control(DDC) schemes is proposed to implement on the system through the Profibus network, as long as the OPC(OLE for process control) server is utilized to communicate between the control schemes presented and the multivariable system. The real test scenarios are carried out and the corresponding outcomes in their present forms are acquired. In the same way, the proposed control schemes results are compared with each other, where the real consequences verify the validity of them in the field of the presented industrial multivariable system control.