BACKGROUND: Activation of N-methyl-D-aspartate receptor (NMDAR) is a key link of exitotoxicity at the phase of cerebral ischemic injury. Because NMDAR is a main way to mediate internal flow of Ca2+ among glutamic acid...BACKGROUND: Activation of N-methyl-D-aspartate receptor (NMDAR) is a key link of exitotoxicity at the phase of cerebral ischemic injury. Because NMDAR is a main way to mediate internal flow of Ca2+ among glutamic acid receptors, over-excitation can cause neuronal apoptosis. Calcitonin gene related peptide has a strongly biological activity. On one hand, it can protect ischemic neurons through inhibiting the expression of NMDAR1 mRNA; on the other hand, it can play the protective effect through down-regulating the expression of NMDAR1 mRNA by exogenous calcitonin gene related peptide. OBJECTIVE: To observe the expression of NMDAR1 and the regulatory effect of calcitonin gene related peptide on the expression of NMDAR1 mRNA and protein in the cerebral cortex of rats with focal cerebral ischemia/reperfusion (I/R). DESIGN: Randomized controlled animal study. SETTING: China Medical University. MATERIALS: A total of 216 healthy male Wistar rats, general grade, weighing 250-280 g, were selected in this study. Twelve rats were randomly selected to regard as control group; meanwhile, other 204 rats were used to establish middle cerebral artery occlusion/reperfusion (MACO) models. The main reagents were detailed as follows: calcitonin gene related peptide (Sigma Company); calcitonin gene related peptide kit (Boster Company); antibody Ⅰ, Ⅱ and antibody β-actin Ⅰ, Ⅱ of NMDAR1 mRNA and chemiluminescence reagent (Santa Cruz Company, USA). METHODS: The experiment was carried out in the Laboratory of Neurobiology of China Medical University from August 2005 to June 2006. ① Right MCAO models of rats were established to cause focal ischemia and scored based on Zea Longa five-grade scale. If the scores were 1, 2 and 3 after wakefulness, the MACO models were established successfully and involved in the experiment. A total of 120 rats with successful modeling were randomly divided into I/R group and administration group with 60 in each group. All rats in the both groups were observed at five time points, including 6, 12, 24, 48 and 72 hours after reperfusion and after 2-hour ischemia, with 12 experimental animals at each time point. Six rats were prepared for detection of hybridization in situ, and the other 6 were used for Western blotting histochemical detection. Rats in the control group were opened their skin to separate common carotid artery and not treated with line and drugs. In addition, rats in the I/R group were treated with 1 mL saline at 2 hours after focal cerebral ischemia, and then, rats in the administration group were treated with 1 mL (1 g/L) calcitonin gene related peptide at 2 hours after focal cerebral ischemia. ② The expression of NMDAR1 mRNA was detected with hybridization in situ at various time points; moreover, the expression of NMDAR1 protein was measured with Western blotting method at various time points. The results were analyzed with Metamoph imaging analytical system. MAIN OUTCOME MEASURES: The expression of NMDAR1 mRNA and its protein in cortical neurons of rats at various time points. RESULTS: A total of 84 rats were excluded because of non-symptoms, exanimation or death; and then, 132 rats were involved in the final analysis. The expression of NMDAR1 mRNA and its protein in cortical neurons of rats in the control group was 0.205±0.001 and 0.184±0.001, respectively; after I/R, expression of NMDAR1 mRNA and its protein was up-regulated, especially, expression of mRNA at 6, 12, 24, 48 and 72 hours was 0.245±0.003, 0.287±0.004, 0.354±0.008, 0.284±0.002 and 0.217±0.006, respectively; moreover, expression of protein at 6, 12, 24, 48 and 72 hours was 0.222±0.003, 0.261±0.028, 0.311±0.004, 0.259±0.013 and 0.210±0.008, respectively. There was significant difference between the two groups (0.205±0.001, P < 0.01). The expression was up-related in the former 24 hours, reached peak at 24 hours, down-regulated, and decreased to the level of control group at 72 hours. Except 72 hours, the expression of NMDAR1 mRNA and its protein was lower in administration group than that in I/R group at other four time points. In addition, the expression of mRNA at 6, 12, 24, 48 and 72 hours was 0.223±0.005, 0.243±0.001, 0.292±0.002, 0.250±0.003 and 0.213±0.003, respectively; moreover, the expression of protein at 6, 12, 24, 48 and 72 hours was 0.216±0.006, 0.245±0.025, 0.276±0.003, 0.241±0.045 and 0.202±0.013, respectively. There was significant difference at various time points (P < 0.05). CONCLUSION: The expressions of NMDAR1 mRNA and its protein of peripheral cortical neurons are up-related in ischemic area after focal cerebral I/R. Meanwhile, exogenous calcitonin gene related peptide can protect cortical neurons through inhibiting expression of NMDAR1 mRNA and its protein after focal cerebral I/R.展开更多
N-methyl-D-aspartate receptor hypofunction is the basis of pathophysiology in schizophrenia. Blocking the N-methyl-D-aspartate receptor impairs learning and memory abilities and induces pathological changes in the bra...N-methyl-D-aspartate receptor hypofunction is the basis of pathophysiology in schizophrenia. Blocking the N-methyl-D-aspartate receptor impairs learning and memory abilities and induces pathological changes in the brain. Previous studies have paid little attention to the role of the N-methyl-D-aspartate receptor subunit 1 (NR1) in neurogenesis in the hippocampus of schizophrenia. A mouse model of schizophrenia was established by intraperitoneal injection of 0.6 mg/kg MK-801, once a day, for 14 days. In N-methyl-D-aspartate-treated mice, N-methyl-D-aspartate was administered by intracerebroventricular injection in schizophrenia mice on day 15. The number of NR1-, Ki67- or BrdU-immunoreactive cells in the dentate gyrus was measured by immunofluorescence staining. Our data showed the number of NR1-immunoreactive cells increased along with the decreasing numbers of BrdU- and Ki67-immunoreactive cells in the schizophrenia groups compared with the control group. N-methyl-D-aspartate could reverse the above changes. These results indicated that NR1 can regulate neurogenesis in the hippocampal dentate gyrus of schizophrenia mice, supporting NR1 as a promising therapeutic target in the treatment of schizophrenia. This study was approved by the Experimental Animal Ethics Committee of the Ningxia Medical University, China (approval No. 2014-014) on March 6, 2014.展开更多
Status epilepticus was induced via intraperitoneal injection of lithium-pilocarpine.The inhibitory effects of propofol on status epilepticus in rats were judged based on observation of behavior,electroencephalography ...Status epilepticus was induced via intraperitoneal injection of lithium-pilocarpine.The inhibitory effects of propofol on status epilepticus in rats were judged based on observation of behavior,electroencephalography and 24-hour survival rate.Propofol(12.5-100 mg/kg) improved status epilepticus in a dose-dependent manner,and significantly reduced the number of deaths within 24 hours of lithium-pilocarpine injection.Western blot results showed that,24 hours after induction of status epilepticus,the levels of N-methyl-D-aspartate receptor 2A and 2B subunits were significantly increased in rat cerebral cortex and hippocampus.Propofol at 50 mg/kg significantly suppressed the increase in N-methyl-D-aspartate receptor 2B subunit levels,but not the increase in N-methyl-D-aspartate receptor 2A subunit levels.The results suggest that propofol can effectively inhibit status epilepticus induced by lithium-pilocarpine.This effect may be associated with downregulation of N-methyl-D-aspartate receptor 2B subunit expression after seizures.展开更多
The subcellular localization of N-methyI-D-aspartic acid receptor subunit 1 in neural stem cells of the subventricular zone of adult rats was detected using electron microscopy, following immunohistochemistry and immu...The subcellular localization of N-methyI-D-aspartic acid receptor subunit 1 in neural stem cells of the subventricular zone of adult rats was detected using electron microscopy, following immunohistochemistry and immunogold-silver double staining. Results confirmed the presence of neural stem cells in the subventricular zone, which is a key neurogenic region in the central nervous system of adult mammals. The expression of N-methyI-D-aspartic acid receptor subunit 1 was higher than that of nestin and mainly distributed in the cell membrane, cytoplasm, rough endoplasmic reticulum and Golgi complex of neural stem cells.展开更多
Sortilin-related receptor 1(SORL1)is a critical gene associated with late-onset Alzheimer’s disease.SORL1 contributes to the development and progression of this neurodegenerative condition by affecting the transport ...Sortilin-related receptor 1(SORL1)is a critical gene associated with late-onset Alzheimer’s disease.SORL1 contributes to the development and progression of this neurodegenerative condition by affecting the transport and metabolism of intracellularβ-amyloid precursor protein.To better understand the underlying mechanisms of SORL1 in the pathogenesis of late-onset Alzheimer s disease,in this study,we established a mouse model of SorI1 gene knockout using cluste red regularly inters paced short palindro mic repeats-associated protein 9 technology.We found that Sorl1-knocko ut mice displayed deficits in learning and memory.Furthermore,the expression of brain-derived neurotrophic factor was significantly downregulated in the hippocampus and co rtex,and amyloidβ-protein deposits were observed in the brains of 5orl1-knockout mice.In vitro,hippocampal neuronal cell synapses from homozygous Sorl1-knockout mice were impaired.The expression of synaptic proteins,including Drebrin and NR2B,was significantly reduced,and also their colocalization.Additionally,by knocking out the Sorl1 gene in N2a cells,we found that expression of the N-methyl-D-aspartate receptor,NR2B,and cyclic adenosine monophosphate-response element binding protein was also inhibited.These findings suggest that SORL1 participates in the pathogenesis of late-onset Alzheimer s disease by regulating the N-methyl-D-aspartate receptor NR2B/cyclic adenosine monophosphate-response element binding protein signaling axis.展开更多
Objective: To determine the protective effect of monosialoganglionside (GM1) and evaluate the influence of GM1 on expression of N-methyl-D-aspartate receptor subunit 1 (NMDAR1) in Sprague-Dawley (SD) rats with focal c...Objective: To determine the protective effect of monosialoganglionside (GM1) and evaluate the influence of GM1 on expression of N-methyl-D-aspartate receptor subunit 1 (NMDAR1) in Sprague-Dawley (SD) rats with focal cerebral ische- mia-reperfusion (I/R). Methods: Left middle cerebral artery (MCA) was occluded by an intraluminal suture for 1 h and the brain was reperfused for 72 h in SD rats when infarct volume was measured, GM1 (10 mg/kg) was given ip (intraperitoneally) at 5 min (group A), 1 h (group B) and 2 h (group C) after MCA occlusion (MCAo). Expression of NMDAR1 was detected by Western blot at various time after reperfusion (4 h, 6 h, 24 h, 48 h and 72 h) in ischemic hemispheres of the rats with or without GM1 admin- istered. Results: (1) Adjusted relative infarct volumes of groups A and B were significantly smaller than that of group C and the control group (P<0.01 and P<0.05, respectively). (2) Expression level of NMDAR1 was temporally high at 6 h after reperfusion, and dipped below the normal level at 72 h after reperfusion. GM1 at 5 min after MCAo significantly suppressed the expression of NMDAR1 at 6 h after reperfusion (P<0.05 vs the control). At 72 h after reperfusion, the NMDAR1 expression level of rats treated with GM1 administered (at 5 min or 2 h after MCAo) was significantly higher than that of the control (P<0.05). Conclusion: GM1 can time-dependently reduce infarct volume in rats with focal cerebral I/R partly through stabilizing the expression of NMDAR1.展开更多
BACKGROUND: Developmental seizures are pathologically characterized by regenerative sprouting of hippocampal mossy fibers rich in Zn^2+. Zn^2+ metabolism in the mossy fiber pathway, and Zn^2+ accumulation in presy...BACKGROUND: Developmental seizures are pathologically characterized by regenerative sprouting of hippocampal mossy fibers rich in Zn^2+. Zn^2+ metabolism in the mossy fiber pathway, and Zn^2+ accumulation in presynaptic membrane vesicles, are dependent on zinc transporter 1 (ZnT1) and glutamate receptor subunit 2 (GluR2). OBJECTIVE: To investigate the effects of long-term recurrent neonatal seizure, in the presence and absence of physical exercise, on the developmental expression of hippocampal zinc transporter 1 (ZnT1) and GluR2, and on cognitive function in rats. DESIGN, TIME AND SETTING: Based on behavioral examination and molecular biological research, a randomized, controlled animal experiment was performed at the Department of Neurobiology, Medical College of Soochow University, between January 2007 and April 2008. MATERIALS: Twenty-one 6-day-old Sprague Dawley rats of either gender were employed in this study. ZnT1 mRNA in situ hybridization kit was provided by Tianjin Haoyang Biological Manufacture Co.,Ltd., China. Rabbit anti-GluR2 was purchased from Santa Cruz Biotech, Inc, USA. METHODS: Rats were randomly divided into a recurrent seizure group (n = 11) and a control group (n = 10). In the recurrent seizure group, 30-minute seizure was induced by flurothyl gas inhalation for a total of 6 consecutive days. Rats from the control group underwent experimental procedures similar to the recurrent seizure group, with the exception of flurothyl gas inhalation. Thirty minutes of treadmill exercise was performed daily by all rats at postnatal days 51–56. MAIN OUTCOME MEASURES: At postnatal day 82, rat hippocampal tissue was harvested for analysis of hippocampal ZnT1 and GluR2 expression by in situ hybridization and immunohistochemistry, respectively. Rat learning and memory capabilities were examined using the Y-maze test. RESULTS: In the recurrent seizure group, the gray scale value of ZnT1 in situ hybridization positive neurons in the hippocampal CA3 region was significantly greater (P 〈 0.05), while the gray scale value of GluR2 immunoreactive neurons in the hippocampal hilus and dentate gyrus was significantly lower (P 〈 0.05), than in the control group. At postnatal days 29–35, numbers of trials to criteria for successful learning were greater in the recurrent seizure group than in the control group (P 〈 0.05); at postnatal days 61–67, the numbers of trials to criteria for successful learning were similar between the two groups (P 〉 0.05). At postnatal days 29–35 and 61–67, there was no significant difference in memory capability between the recurrent seizure and control groups (P 〉 0.05). CONCLUSION: Physical exercise likely improves the learning deficits caused by recurrent neonatal seizure in rats during brain development by modulating ZnT1 and GluR2 expression.展开更多
[Objective] The research aimed to study the effects of microwave on the chick embryo development and the cognitive function of chickling. [Method] The microwave which was transmitted by the permatron and was 2 450 MHz...[Objective] The research aimed to study the effects of microwave on the chick embryo development and the cognitive function of chickling. [Method] The microwave which was transmitted by the permatron and was 2 450 MHz was used to simulate the microwave radiation source to radiate the hatching eggs until the chickling was hatched out. The disposable passive avoidance learning and RT-PCR were respectively used to detect the influences of microwave on the cognitive function of chickling and the expression amounts of NMDA receptor NR1 and NR2 subunits. [Result] After the microwave radiation,the avoidance rate of exposed group was significantly lower than that in the control group. Especially the avoidance rate of highest radiation intensity group was extremely significantly lower than that in the control group. Meanwhile,the body weights of two groups of chickling in the exposed group increased,and the hatching time in one group increased. Via RT-PCR analysis,the expression amount of NR2 subunit increased on the 10th day and the 15th day. The expression amount of NR1 subunit only decreased on the 15th day. [Conclusion] The microwave had the certain influence on the individual development. By changing the structure composition and function of NMDA receptor in the endbrain,the microwave made the self-regulation ability of chickling decline,which had the certain damage on the cognitive function.展开更多
The cumulative damage caused by repetitive mild traumatic brain injury can cause long-term neurodegeneration leading to cognitive impairment.This cognitive impairment is thought to result specifically from damage to t...The cumulative damage caused by repetitive mild traumatic brain injury can cause long-term neurodegeneration leading to cognitive impairment.This cognitive impairment is thought to result specifically from damage to the hippocampus.In this study,we detected cognitive impairment in mice 6 weeks after repetitive mild traumatic brain injury using the novel object recognition test and the Morris water maze test.Immunofluorescence staining showed that p-tau expression was increased in the hippocampus after repetitive mild traumatic brain injury.Golgi staining showed a significant decrease in the total density of neuronal dendritic spines in the hippocampus,as well as in the density of mature dendritic spines.To investigate the specific molecular mechanisms underlying cognitive impairment due to hippocampal damage,we performed proteomic and phosphoproteomic analyses of the hippocampus with and without repetitive mild traumatic brain injury.The differentially expressed proteins were mainly enriched in inflammation,immunity,and coagulation,suggesting that non-neuronal cells are involved in the pathological changes that occur in the hippocampus in the chronic stage after repetitive mild traumatic brain injury.In contrast,differentially expressed phosphorylated proteins were mainly enriched in pathways related to neuronal function and structure,which is more consistent with neurodegeneration.We identified N-methyl-D-aspartate receptor 1 as a hub molecule involved in the response to repetitive mild traumatic brain injury,and western blotting showed that,while N-methyl-D-aspartate receptor 1 expression was not altered in the hippocampus after repetitive mild traumatic brain injury,its phosphorylation level was significantly increased,which is consistent with the omics results.Administration of GRP78608,an N-methyl-D-aspartate receptor 1 antagonist,to the hippocampus markedly improved repetitive mild traumatic brain injury-induced cognitive impairment.In conclusion,our findings suggest that N-methyl-D-aspartate receptor 1 signaling in the hippocampus is involved in cognitive impairment in the chronic stage after repetitive mild traumatic brain injury and may be a potential target for intervention and treatment.展开更多
Gamma-aminobutyric acid(GABA)ergic neurons,the most abundant inhibitory neurons in the human brain,have been found to be reduced in many neurological disorders,including Alzheimer's disease and Alzheimer's dis...Gamma-aminobutyric acid(GABA)ergic neurons,the most abundant inhibitory neurons in the human brain,have been found to be reduced in many neurological disorders,including Alzheimer's disease and Alzheimer's disease-related dementia.Our previous study identified the upregulation of microRNA-502-3p(miR-502-3p)and downregulation of GABA type A receptor subunitα-1 in Alzheimer's disease synapses.This study investigated a new molecular relationship between miR-502-3p and GABAergic synapse function.In vitro studies were perfo rmed using the mouse hippocampal neuronal cell line HT22 and miR-502-3p agomiRs and antagomiRs.In silico analysis identified multiple binding sites of miR-502-3p at GABA type A receptor subunitα-1 mRNA.Luciferase assay confirmed that miR-502-3p targets the GABA type A receptor subunitα-1 gene and suppresses the luciferase activity.Furthermore,quantitative reve rse transcription-polymerase chain reaction,miRNA in situ hybridization,immunoblotting,and immunostaining analysis confirmed that overexpression of miR-502-3p reduced the GABA type A receptor subunitα-1 level,while suppression of miR-502-3p increased the level of GABA type A receptor subunitα-1 protein.Notably,as a result of the overexpression of miR-502-3p,cell viability was found to be reduced,and the population of necrotic cells was found to be increased.The whole cell patch-clamp analysis of human-GABA receptor A-α1/β3/γ2L human embryonic kidney(HEK)recombinant cell line also showed that overexpression of miR-502-3p reduced the GABA current and overall GABA function,suggesting a negative correlation between miR-502-3p levels and GABAergic synapse function.Additionally,the levels of proteins associated with Alzheimer s disease were high with miR-502-3p overexpression and reduced with miR-502-3p suppression.The present study provides insight into the molecular mechanism of regulation of GABAergic synapses by miR-502-3p.We propose that micro-RNA,in particular miR-502-3p,could be a potential therapeutic to rget to modulate GABAergic synapse function in neurological disorders,including Alzheimer's disease and Alzheimer's diseaserelated dementia.展开更多
文摘BACKGROUND: Activation of N-methyl-D-aspartate receptor (NMDAR) is a key link of exitotoxicity at the phase of cerebral ischemic injury. Because NMDAR is a main way to mediate internal flow of Ca2+ among glutamic acid receptors, over-excitation can cause neuronal apoptosis. Calcitonin gene related peptide has a strongly biological activity. On one hand, it can protect ischemic neurons through inhibiting the expression of NMDAR1 mRNA; on the other hand, it can play the protective effect through down-regulating the expression of NMDAR1 mRNA by exogenous calcitonin gene related peptide. OBJECTIVE: To observe the expression of NMDAR1 and the regulatory effect of calcitonin gene related peptide on the expression of NMDAR1 mRNA and protein in the cerebral cortex of rats with focal cerebral ischemia/reperfusion (I/R). DESIGN: Randomized controlled animal study. SETTING: China Medical University. MATERIALS: A total of 216 healthy male Wistar rats, general grade, weighing 250-280 g, were selected in this study. Twelve rats were randomly selected to regard as control group; meanwhile, other 204 rats were used to establish middle cerebral artery occlusion/reperfusion (MACO) models. The main reagents were detailed as follows: calcitonin gene related peptide (Sigma Company); calcitonin gene related peptide kit (Boster Company); antibody Ⅰ, Ⅱ and antibody β-actin Ⅰ, Ⅱ of NMDAR1 mRNA and chemiluminescence reagent (Santa Cruz Company, USA). METHODS: The experiment was carried out in the Laboratory of Neurobiology of China Medical University from August 2005 to June 2006. ① Right MCAO models of rats were established to cause focal ischemia and scored based on Zea Longa five-grade scale. If the scores were 1, 2 and 3 after wakefulness, the MACO models were established successfully and involved in the experiment. A total of 120 rats with successful modeling were randomly divided into I/R group and administration group with 60 in each group. All rats in the both groups were observed at five time points, including 6, 12, 24, 48 and 72 hours after reperfusion and after 2-hour ischemia, with 12 experimental animals at each time point. Six rats were prepared for detection of hybridization in situ, and the other 6 were used for Western blotting histochemical detection. Rats in the control group were opened their skin to separate common carotid artery and not treated with line and drugs. In addition, rats in the I/R group were treated with 1 mL saline at 2 hours after focal cerebral ischemia, and then, rats in the administration group were treated with 1 mL (1 g/L) calcitonin gene related peptide at 2 hours after focal cerebral ischemia. ② The expression of NMDAR1 mRNA was detected with hybridization in situ at various time points; moreover, the expression of NMDAR1 protein was measured with Western blotting method at various time points. The results were analyzed with Metamoph imaging analytical system. MAIN OUTCOME MEASURES: The expression of NMDAR1 mRNA and its protein in cortical neurons of rats at various time points. RESULTS: A total of 84 rats were excluded because of non-symptoms, exanimation or death; and then, 132 rats were involved in the final analysis. The expression of NMDAR1 mRNA and its protein in cortical neurons of rats in the control group was 0.205±0.001 and 0.184±0.001, respectively; after I/R, expression of NMDAR1 mRNA and its protein was up-regulated, especially, expression of mRNA at 6, 12, 24, 48 and 72 hours was 0.245±0.003, 0.287±0.004, 0.354±0.008, 0.284±0.002 and 0.217±0.006, respectively; moreover, expression of protein at 6, 12, 24, 48 and 72 hours was 0.222±0.003, 0.261±0.028, 0.311±0.004, 0.259±0.013 and 0.210±0.008, respectively. There was significant difference between the two groups (0.205±0.001, P < 0.01). The expression was up-related in the former 24 hours, reached peak at 24 hours, down-regulated, and decreased to the level of control group at 72 hours. Except 72 hours, the expression of NMDAR1 mRNA and its protein was lower in administration group than that in I/R group at other four time points. In addition, the expression of mRNA at 6, 12, 24, 48 and 72 hours was 0.223±0.005, 0.243±0.001, 0.292±0.002, 0.250±0.003 and 0.213±0.003, respectively; moreover, the expression of protein at 6, 12, 24, 48 and 72 hours was 0.216±0.006, 0.245±0.025, 0.276±0.003, 0.241±0.045 and 0.202±0.013, respectively. There was significant difference at various time points (P < 0.05). CONCLUSION: The expressions of NMDAR1 mRNA and its protein of peripheral cortical neurons are up-related in ischemic area after focal cerebral I/R. Meanwhile, exogenous calcitonin gene related peptide can protect cortical neurons through inhibiting expression of NMDAR1 mRNA and its protein after focal cerebral I/R.
基金supported by the National Natural Science Foundation of China,No.81160169(to JL),81460214(to JL),31660270(to JD),31460255(to JD)the Natural Science Foundation of Ningxia Hui Autonomous Region of China,No.2018AAC02005(to JL)
文摘N-methyl-D-aspartate receptor hypofunction is the basis of pathophysiology in schizophrenia. Blocking the N-methyl-D-aspartate receptor impairs learning and memory abilities and induces pathological changes in the brain. Previous studies have paid little attention to the role of the N-methyl-D-aspartate receptor subunit 1 (NR1) in neurogenesis in the hippocampus of schizophrenia. A mouse model of schizophrenia was established by intraperitoneal injection of 0.6 mg/kg MK-801, once a day, for 14 days. In N-methyl-D-aspartate-treated mice, N-methyl-D-aspartate was administered by intracerebroventricular injection in schizophrenia mice on day 15. The number of NR1-, Ki67- or BrdU-immunoreactive cells in the dentate gyrus was measured by immunofluorescence staining. Our data showed the number of NR1-immunoreactive cells increased along with the decreasing numbers of BrdU- and Ki67-immunoreactive cells in the schizophrenia groups compared with the control group. N-methyl-D-aspartate could reverse the above changes. These results indicated that NR1 can regulate neurogenesis in the hippocampal dentate gyrus of schizophrenia mice, supporting NR1 as a promising therapeutic target in the treatment of schizophrenia. This study was approved by the Experimental Animal Ethics Committee of the Ningxia Medical University, China (approval No. 2014-014) on March 6, 2014.
基金supported by National Natural Science Foundation of China,No. 30500482
文摘Status epilepticus was induced via intraperitoneal injection of lithium-pilocarpine.The inhibitory effects of propofol on status epilepticus in rats were judged based on observation of behavior,electroencephalography and 24-hour survival rate.Propofol(12.5-100 mg/kg) improved status epilepticus in a dose-dependent manner,and significantly reduced the number of deaths within 24 hours of lithium-pilocarpine injection.Western blot results showed that,24 hours after induction of status epilepticus,the levels of N-methyl-D-aspartate receptor 2A and 2B subunits were significantly increased in rat cerebral cortex and hippocampus.Propofol at 50 mg/kg significantly suppressed the increase in N-methyl-D-aspartate receptor 2B subunit levels,but not the increase in N-methyl-D-aspartate receptor 2A subunit levels.The results suggest that propofol can effectively inhibit status epilepticus induced by lithium-pilocarpine.This effect may be associated with downregulation of N-methyl-D-aspartate receptor 2B subunit expression after seizures.
基金the Natural Science Foundation of Universities in Jiangsu Province,No.07KJB310119the Natural Science Foundation of Jiangsu Province,No.BK2009087
文摘The subcellular localization of N-methyI-D-aspartic acid receptor subunit 1 in neural stem cells of the subventricular zone of adult rats was detected using electron microscopy, following immunohistochemistry and immunogold-silver double staining. Results confirmed the presence of neural stem cells in the subventricular zone, which is a key neurogenic region in the central nervous system of adult mammals. The expression of N-methyI-D-aspartic acid receptor subunit 1 was higher than that of nestin and mainly distributed in the cell membrane, cytoplasm, rough endoplasmic reticulum and Golgi complex of neural stem cells.
基金supported by the Community Development Office of Hunan Provincial Science and Technology DepartmentChina,Nos.2020SK53613(to DH),21JJ31006(to DH)the Fundamental Research Funds of Central South University,Nos.CX20220375(to TX),2023zzts215(to MZ)。
文摘Sortilin-related receptor 1(SORL1)is a critical gene associated with late-onset Alzheimer’s disease.SORL1 contributes to the development and progression of this neurodegenerative condition by affecting the transport and metabolism of intracellularβ-amyloid precursor protein.To better understand the underlying mechanisms of SORL1 in the pathogenesis of late-onset Alzheimer s disease,in this study,we established a mouse model of SorI1 gene knockout using cluste red regularly inters paced short palindro mic repeats-associated protein 9 technology.We found that Sorl1-knocko ut mice displayed deficits in learning and memory.Furthermore,the expression of brain-derived neurotrophic factor was significantly downregulated in the hippocampus and co rtex,and amyloidβ-protein deposits were observed in the brains of 5orl1-knockout mice.In vitro,hippocampal neuronal cell synapses from homozygous Sorl1-knockout mice were impaired.The expression of synaptic proteins,including Drebrin and NR2B,was significantly reduced,and also their colocalization.Additionally,by knocking out the Sorl1 gene in N2a cells,we found that expression of the N-methyl-D-aspartate receptor,NR2B,and cyclic adenosine monophosphate-response element binding protein was also inhibited.These findings suggest that SORL1 participates in the pathogenesis of late-onset Alzheimer s disease by regulating the N-methyl-D-aspartate receptor NR2B/cyclic adenosine monophosphate-response element binding protein signaling axis.
基金Project (No. 2004QN012) supported by the Youth Talent SpecialFund of Health Bureau of Zhejiang Province the National BasicResearch Program (973) of China (No. G1999054000) and the Na-tional Natural Science Foundation of China (No. 30371637)
文摘Objective: To determine the protective effect of monosialoganglionside (GM1) and evaluate the influence of GM1 on expression of N-methyl-D-aspartate receptor subunit 1 (NMDAR1) in Sprague-Dawley (SD) rats with focal cerebral ische- mia-reperfusion (I/R). Methods: Left middle cerebral artery (MCA) was occluded by an intraluminal suture for 1 h and the brain was reperfused for 72 h in SD rats when infarct volume was measured, GM1 (10 mg/kg) was given ip (intraperitoneally) at 5 min (group A), 1 h (group B) and 2 h (group C) after MCA occlusion (MCAo). Expression of NMDAR1 was detected by Western blot at various time after reperfusion (4 h, 6 h, 24 h, 48 h and 72 h) in ischemic hemispheres of the rats with or without GM1 admin- istered. Results: (1) Adjusted relative infarct volumes of groups A and B were significantly smaller than that of group C and the control group (P<0.01 and P<0.05, respectively). (2) Expression level of NMDAR1 was temporally high at 6 h after reperfusion, and dipped below the normal level at 72 h after reperfusion. GM1 at 5 min after MCAo significantly suppressed the expression of NMDAR1 at 6 h after reperfusion (P<0.05 vs the control). At 72 h after reperfusion, the NMDAR1 expression level of rats treated with GM1 administered (at 5 min or 2 h after MCAo) was significantly higher than that of the control (P<0.05). Conclusion: GM1 can time-dependently reduce infarct volume in rats with focal cerebral I/R partly through stabilizing the expression of NMDAR1.
基金the National Natural Science Foundation of China, No. 30470555, 30571909, 30870808the Natural Science Foundation of Jiangsu Province, No. BK2007509Natural Science Foundation for Colleges and Universities in Jiangsu Province, No. 07KJB320103
文摘BACKGROUND: Developmental seizures are pathologically characterized by regenerative sprouting of hippocampal mossy fibers rich in Zn^2+. Zn^2+ metabolism in the mossy fiber pathway, and Zn^2+ accumulation in presynaptic membrane vesicles, are dependent on zinc transporter 1 (ZnT1) and glutamate receptor subunit 2 (GluR2). OBJECTIVE: To investigate the effects of long-term recurrent neonatal seizure, in the presence and absence of physical exercise, on the developmental expression of hippocampal zinc transporter 1 (ZnT1) and GluR2, and on cognitive function in rats. DESIGN, TIME AND SETTING: Based on behavioral examination and molecular biological research, a randomized, controlled animal experiment was performed at the Department of Neurobiology, Medical College of Soochow University, between January 2007 and April 2008. MATERIALS: Twenty-one 6-day-old Sprague Dawley rats of either gender were employed in this study. ZnT1 mRNA in situ hybridization kit was provided by Tianjin Haoyang Biological Manufacture Co.,Ltd., China. Rabbit anti-GluR2 was purchased from Santa Cruz Biotech, Inc, USA. METHODS: Rats were randomly divided into a recurrent seizure group (n = 11) and a control group (n = 10). In the recurrent seizure group, 30-minute seizure was induced by flurothyl gas inhalation for a total of 6 consecutive days. Rats from the control group underwent experimental procedures similar to the recurrent seizure group, with the exception of flurothyl gas inhalation. Thirty minutes of treadmill exercise was performed daily by all rats at postnatal days 51–56. MAIN OUTCOME MEASURES: At postnatal day 82, rat hippocampal tissue was harvested for analysis of hippocampal ZnT1 and GluR2 expression by in situ hybridization and immunohistochemistry, respectively. Rat learning and memory capabilities were examined using the Y-maze test. RESULTS: In the recurrent seizure group, the gray scale value of ZnT1 in situ hybridization positive neurons in the hippocampal CA3 region was significantly greater (P 〈 0.05), while the gray scale value of GluR2 immunoreactive neurons in the hippocampal hilus and dentate gyrus was significantly lower (P 〈 0.05), than in the control group. At postnatal days 29–35, numbers of trials to criteria for successful learning were greater in the recurrent seizure group than in the control group (P 〈 0.05); at postnatal days 61–67, the numbers of trials to criteria for successful learning were similar between the two groups (P 〉 0.05). At postnatal days 29–35 and 61–67, there was no significant difference in memory capability between the recurrent seizure and control groups (P 〉 0.05). CONCLUSION: Physical exercise likely improves the learning deficits caused by recurrent neonatal seizure in rats during brain development by modulating ZnT1 and GluR2 expression.
基金Supported by Suzhou City Science and Technology Bureau Item(YJS0904)~~
文摘[Objective] The research aimed to study the effects of microwave on the chick embryo development and the cognitive function of chickling. [Method] The microwave which was transmitted by the permatron and was 2 450 MHz was used to simulate the microwave radiation source to radiate the hatching eggs until the chickling was hatched out. The disposable passive avoidance learning and RT-PCR were respectively used to detect the influences of microwave on the cognitive function of chickling and the expression amounts of NMDA receptor NR1 and NR2 subunits. [Result] After the microwave radiation,the avoidance rate of exposed group was significantly lower than that in the control group. Especially the avoidance rate of highest radiation intensity group was extremely significantly lower than that in the control group. Meanwhile,the body weights of two groups of chickling in the exposed group increased,and the hatching time in one group increased. Via RT-PCR analysis,the expression amount of NR2 subunit increased on the 10th day and the 15th day. The expression amount of NR1 subunit only decreased on the 15th day. [Conclusion] The microwave had the certain influence on the individual development. By changing the structure composition and function of NMDA receptor in the endbrain,the microwave made the self-regulation ability of chickling decline,which had the certain damage on the cognitive function.
基金funded by the National Natural Science Foundation of China,Nos.82171363(to PL),82171321(to XL),82171458(to XJ)the Youth Nova Program of Shaanxi,No.2021KJXX-19(to PL)。
文摘The cumulative damage caused by repetitive mild traumatic brain injury can cause long-term neurodegeneration leading to cognitive impairment.This cognitive impairment is thought to result specifically from damage to the hippocampus.In this study,we detected cognitive impairment in mice 6 weeks after repetitive mild traumatic brain injury using the novel object recognition test and the Morris water maze test.Immunofluorescence staining showed that p-tau expression was increased in the hippocampus after repetitive mild traumatic brain injury.Golgi staining showed a significant decrease in the total density of neuronal dendritic spines in the hippocampus,as well as in the density of mature dendritic spines.To investigate the specific molecular mechanisms underlying cognitive impairment due to hippocampal damage,we performed proteomic and phosphoproteomic analyses of the hippocampus with and without repetitive mild traumatic brain injury.The differentially expressed proteins were mainly enriched in inflammation,immunity,and coagulation,suggesting that non-neuronal cells are involved in the pathological changes that occur in the hippocampus in the chronic stage after repetitive mild traumatic brain injury.In contrast,differentially expressed phosphorylated proteins were mainly enriched in pathways related to neuronal function and structure,which is more consistent with neurodegeneration.We identified N-methyl-D-aspartate receptor 1 as a hub molecule involved in the response to repetitive mild traumatic brain injury,and western blotting showed that,while N-methyl-D-aspartate receptor 1 expression was not altered in the hippocampus after repetitive mild traumatic brain injury,its phosphorylation level was significantly increased,which is consistent with the omics results.Administration of GRP78608,an N-methyl-D-aspartate receptor 1 antagonist,to the hippocampus markedly improved repetitive mild traumatic brain injury-induced cognitive impairment.In conclusion,our findings suggest that N-methyl-D-aspartate receptor 1 signaling in the hippocampus is involved in cognitive impairment in the chronic stage after repetitive mild traumatic brain injury and may be a potential target for intervention and treatment.
基金supported by the National Institute on Aging (NIA)National Institutes of Health (NIH)+3 种基金Nos.K99AG065645,R00AG065645R00AG065645-04S1 (to SK)NIH research grants,NINDS,No.R01 NS115834NINDS/NIA,No.R01 NS115834-02S1 (to LG)。
文摘Gamma-aminobutyric acid(GABA)ergic neurons,the most abundant inhibitory neurons in the human brain,have been found to be reduced in many neurological disorders,including Alzheimer's disease and Alzheimer's disease-related dementia.Our previous study identified the upregulation of microRNA-502-3p(miR-502-3p)and downregulation of GABA type A receptor subunitα-1 in Alzheimer's disease synapses.This study investigated a new molecular relationship between miR-502-3p and GABAergic synapse function.In vitro studies were perfo rmed using the mouse hippocampal neuronal cell line HT22 and miR-502-3p agomiRs and antagomiRs.In silico analysis identified multiple binding sites of miR-502-3p at GABA type A receptor subunitα-1 mRNA.Luciferase assay confirmed that miR-502-3p targets the GABA type A receptor subunitα-1 gene and suppresses the luciferase activity.Furthermore,quantitative reve rse transcription-polymerase chain reaction,miRNA in situ hybridization,immunoblotting,and immunostaining analysis confirmed that overexpression of miR-502-3p reduced the GABA type A receptor subunitα-1 level,while suppression of miR-502-3p increased the level of GABA type A receptor subunitα-1 protein.Notably,as a result of the overexpression of miR-502-3p,cell viability was found to be reduced,and the population of necrotic cells was found to be increased.The whole cell patch-clamp analysis of human-GABA receptor A-α1/β3/γ2L human embryonic kidney(HEK)recombinant cell line also showed that overexpression of miR-502-3p reduced the GABA current and overall GABA function,suggesting a negative correlation between miR-502-3p levels and GABAergic synapse function.Additionally,the levels of proteins associated with Alzheimer s disease were high with miR-502-3p overexpression and reduced with miR-502-3p suppression.The present study provides insight into the molecular mechanism of regulation of GABAergic synapses by miR-502-3p.We propose that micro-RNA,in particular miR-502-3p,could be a potential therapeutic to rget to modulate GABAergic synapse function in neurological disorders,including Alzheimer's disease and Alzheimer's diseaserelated dementia.