Status epilepticus was induced via intraperitoneal injection of lithium-pilocarpine.The inhibitory effects of propofol on status epilepticus in rats were judged based on observation of behavior,electroencephalography ...Status epilepticus was induced via intraperitoneal injection of lithium-pilocarpine.The inhibitory effects of propofol on status epilepticus in rats were judged based on observation of behavior,electroencephalography and 24-hour survival rate.Propofol(12.5-100 mg/kg) improved status epilepticus in a dose-dependent manner,and significantly reduced the number of deaths within 24 hours of lithium-pilocarpine injection.Western blot results showed that,24 hours after induction of status epilepticus,the levels of N-methyl-D-aspartate receptor 2A and 2B subunits were significantly increased in rat cerebral cortex and hippocampus.Propofol at 50 mg/kg significantly suppressed the increase in N-methyl-D-aspartate receptor 2B subunit levels,but not the increase in N-methyl-D-aspartate receptor 2A subunit levels.The results suggest that propofol can effectively inhibit status epilepticus induced by lithium-pilocarpine.This effect may be associated with downregulation of N-methyl-D-aspartate receptor 2B subunit expression after seizures.展开更多
Objective To study the effect of chronic noise exposure on expression of N-methyI-D-aspartic acid receptor 2B (NR2B) and tau phosphorylation in hippocampus of rats. Methods Twenty-four male SD rats were divided in c...Objective To study the effect of chronic noise exposure on expression of N-methyI-D-aspartic acid receptor 2B (NR2B) and tau phosphorylation in hippocampus of rats. Methods Twenty-four male SD rats were divided in control group and chronic noise exposure group. NR2B expression and tau phosphorylation in hippocampus of rats were detected after chronic noise exposure (100 dB SPL white noise, 4 h/dx30d) and their mechanisms underlying neuronal apoptosis in hippocampus of rats with TUNEL staining. Results The NR2B expression decreased significantly after chronic noise exposure which resulted in tau hyperphosphorylation and neural apoptosis in hippocampus of rats. Immunohistochemistry showed that the tau hyperphosphorylation was most prominent in dentate gyrus (DG) and CA1 region of rat hippocampus. Conclusion The abnormality of neurotransmitter system, especially Glu and NR2B containing NMDA receptor, and tau hyperphosphorylation in hippocampus of rats, may play a role in chronic noise-induced neural apoptosis and cognition impairment.展开更多
Spinal dorsal horn N-Methyl-D-aspartic acid receptor 2B (NR2B) overexpression plays an important role in the production and maintenance of neuropathic pain. Because small interfering RNA (siRNA) can inhibit NR2B e...Spinal dorsal horn N-Methyl-D-aspartic acid receptor 2B (NR2B) overexpression plays an important role in the production and maintenance of neuropathic pain. Because small interfering RNA (siRNA) can inhibit NR2B expression, siRNA may provide a novel approach to treat neuropathic pain and possibly nerve injury. However, an efficient and safe vector for NR2B siRNA has not been discovered. This study shows that a water soluble lipopolymer (WSLP) comprised of low molecular weight polyethyleneimine (PEI) and cholesterol can deliver siRNA targeting NR2B for the treatment of neuropathic pain. Results show that intrathecal injection of WSLP/siRNA complexes for 3 days inhibit NR2B gene expression with reductions in mRNA and protein levels by 59% and 54%, respectively, compared with control rats (P 〈 0.01). Injection of WSLP complexed with scrambled siRNA, or PEI with siRNA did not show this inhibitory effect. Moreover, injection of WSLP/siRNA complexes significantly relieved neuropathic pain at 3, 7, 12, and 21 days, while injection of WSLP with scrambled siRNA or PEI with siRNA did not. These results demonstrate that WSLP can efficiently deliver siRNA targeting NR2B in vivo and relieve neuropathic pain.展开更多
Objective The rostral anterior cingulate cortex (rACC) is implicated in processing the emotional component of pain. N-methyl-D-aspartate receptors (NMDARs) are highly expressed in the rACC and mediate painrelated ...Objective The rostral anterior cingulate cortex (rACC) is implicated in processing the emotional component of pain. N-methyl-D-aspartate receptors (NMDARs) are highly expressed in the rACC and mediate painrelated affect by activating a signaling pathway that involves cyclic adenosine monophosphate (cAMP)/protein ki- nase A (PKA) and/or extracellular regulated kinase (ERK)/cAMP-response element-binding protein (CREB). The present study investigated the contributions of the NMDAR glycine site and GluN2B subunit to the activation of ERK and CREB both in vitro and in vivo in rat rACC. Methods Immunohistochemistry and Western blot analy- sis were used to separately assess the expression of phospho-ERK (pERK) and phospho-CREB (pCREB) in vitro and in vivo. Double immunostaining was also used to determine the colocalization of pERK and pCREB. Results Both bath application of NMDA in brain slices in vitro and intraplantar injection of formalin into the rat hindpaw in vivo induced significant up-regulation of pERK and pCREB in the rACC, which was inhibited by the NMDAR antago- nist DL-2-amino-5-phospho-novaleric acid. Selective blockade of the NMDAR GluN2B subunit and the glycine- binding site, or degradation of endogenous D-serine, a co-agonist for the glycine site, significantly decreased the up- regulation of pERK and pCREB expression in the rACC. Further, the activated ERK predominantly colocalized with CREB. Conclusion Either the glycine site or the GluN2B subunit of NMDARs participates in the phosphorylation of ERK and CREB induced by bath application of NMDA in brain slices or hindpaw injection of 5% formalin in rats, and these might be fundamental molecular mechanisms underlying pain affect.展开更多
Stroke and Alzheimer's disease are common neurological disorders and often occur in the same individuals.The comorbidity of the two neurological disorders represents a grave health threat to older populations.This...Stroke and Alzheimer's disease are common neurological disorders and often occur in the same individuals.The comorbidity of the two neurological disorders represents a grave health threat to older populations.This review presents a brief background of the development of novel concepts and their clinical potentials.The activity of glutamatergic N-methyl-D-aspartate receptors and N-methyl-D-aspartate receptor-mediated Ca^(2+)influx is critical for neuronal function.An ischemic insult induces prompt and excessive glutamate release and drastic increases of intracellular Ca^(2+)mainly via N-methyl-D-aspartate receptors,particularly of those at the extrasynaptic site.This Ca^(2+)-evoked neuronal cell death in the ischemic core is dominated by necrosis within a few hours and days known as acute excitotoxicity.Furthermore,mild but sustained Ca^(2+)increases under neurodegenerative conditions such as in the distant penumbra of the ischemic brain and early stages of Alzheimer's disease are not immediately toxic,but gradually set off deteriorating Ca^(2+)-dependent signals and neuronal cell loss mostly because of activation of programmed cell death pathways.Based on the Ca^(2+)hypothesis of Alzheimer's disease and recent advances,this Ca^(2+)-activated“silent”degenerative excitotoxicity evolves from years to decades and is recognized as a unique slow and chronic neuropathogenesis.The N-methyl-D-aspartate receptor subunit GluN3A,primarily at the extrasynaptic site,serves as a gatekeeper for the N-methyl-D-aspartate receptor activity and is neuroprotective against both acute and chronic excitotoxicity.Ischemic stroke and Alzheimer's disease,therefore,share an N-methyl-D-aspartate receptor-and Ca^(2+)-mediated mechanism,although with much different time courses.It is thus proposed that early interventions to control Ca^(2+)homeostasis at the preclinical stage are pivotal for individuals who are susceptible to sporadic late-onset Alzheimer's disease and Alzheimer's disease-related dementia.This early treatment simultaneously serves as a preconditioning therapy against ischemic stroke that often attacks the same individuals during abnormal aging.展开更多
Bushen Tiansui decoction is composed of six traditional Chinese medicines:Herba Epimedii,Radix Polygoni multiflori,Plastrum testudinis,Fossilia Ossis Mastodi,Radix Polygalae,and Rhizoma Acorus tatarinowii.Because Bus...Bushen Tiansui decoction is composed of six traditional Chinese medicines:Herba Epimedii,Radix Polygoni multiflori,Plastrum testudinis,Fossilia Ossis Mastodi,Radix Polygalae,and Rhizoma Acorus tatarinowii.Because Bushen Tiansui decoction is effective against amyloid beta(Aβ) toxicity,we hypothesized that it would reduce hippocampal synaptic damage and improve cognitive function in Alzheimer's disease.To test this hypothesis,we used a previously established animal model of Alzheimer's disease,that is,microinjection of aggregated Aβ25–35 into the bilateral brain ventricles of Sprague-Dawley rats.We found that long-term(28 days) oral administration of Bushen Tiansui decoction(0.563,1.688,and 3.375 g/m L;4 m L/day) prevented synaptic loss in the hippocampus and increased the expression levels of synaptic proteins,including postsynaptic density protein 95,the N-methyl-D-aspartate receptor 2 B subunit,and Shank1.These results suggested that Bushen Tiansui decoction can protect synapses by maintaining the expression of these synaptic proteins.Bushen Tiansui decoction also ameliorated measures reflecting spatial learning and memory deficits that were observed in the Morris water maze(i.e.,increased the number of platform crossings and the amount of time spent in the target quadrant and decreased escape latency) following intraventricular injections of aggregated Aβ25–35 compared with those measures in untreated Aβ_(25–35)-injected rats.Overall,these results provided evidence that further studies on the prevention and treatment of dementia with this traditional Chinese medicine are warranted.展开更多
Damage to synaptic plasticity induced by neurotoxicity of amyloid-beta is regarded to be one of the pathological mechanisms of learning and memory disabilities in Alzheimer's disease patients. This study assumed that...Damage to synaptic plasticity induced by neurotoxicity of amyloid-beta is regarded to be one of the pathological mechanisms of learning and memory disabilities in Alzheimer's disease patients. This study assumed that the damage of amyloid-beta to learning and memory abilities was strongly associated with the changes in the Fyn/N-methyl-D-aspartate receptor 2B (NR2B) expression. An APP695V7171 transgenic mouse model of Alzheimer's disease was used and treatment with tetrahydroxy-stilbene glucoside was administered intragas- trically. Results showed that intragastric administration of tetrahydroxy-stilbene glucoside improved the learning and memory abilities of the transgenic mice through increasing NR2B receptors and Fyn expression. It also reversed parameters for synaptic interface structure of gray type I. These findings indicate that tetrahydroxy stilbene glucoside has protective effects on the brain, and has prospects for its clinical application to improve the learning and memory abilities and treat Alzheimer's disease.展开更多
To stop the progression of Alzheimer's disease in the early stage, it is necessary to identify new therapeutic targets. We examined striatal-enriched phosphatase 61 expression in the brain tissues of 12-month-old APP...To stop the progression of Alzheimer's disease in the early stage, it is necessary to identify new therapeutic targets. We examined striatal-enriched phosphatase 61 expression in the brain tissues of 12-month-old APPswe/PSEN1dE9 transgenic mice. Immunohistochemistry showed that striatal-enriched phosphatase 61 protein expression was significantly increased but phosphorylated N-methyl-D-aspartate receptor 2B levels were significantly decreased in the cortex and hippocampus of APPswe/PSEN1dE9 transgenic mice. Western blotting of a cell model of Alzheimer's disease consisting of amyloid-beta peptide (1-42)-treated C57BL/6 mouse cortical neurons in vitro showed that valeric acid (AP5), an N-methyl-D-aspartate receptor antagonist, significantly inhibited amyloidbeta 1-42-induced increased activity of striatal-enriched phosphatase 61. In addition, the phosphorylation of N-methyl-D-aspartate receptor 2B at Tyr1472 was impaired in amyloid-beta 1-42-treated cortical neurons, but knockdown of striatal-enriched phosphatase 61 enhanced the phosphorylation of N-methyl-D-aspartate receptor 2B. Collectively, these findings indicate that striatal-enriched phosphatase 61 can disturb N-methyl-D-aspartate receptor transport and inhibit the progression of learning and study disturbances induced by Alzheimer's disease. Thus, striatal-enriched phosphatase 61 may represent a new target for inhibiting the progression of Alzheimer's disease.展开更多
Colorectal cancer(CRC)is a type of malignant tumor that seriously threatens human health and life,and its treatment has always been a difficulty and hotspot in research.Herein,this study for the first time reports tha...Colorectal cancer(CRC)is a type of malignant tumor that seriously threatens human health and life,and its treatment has always been a difficulty and hotspot in research.Herein,this study for the first time reports that antipsychotic aripiprazole(Ari)against the proliferation of CRC cells both in vitro and in vivo,but with less damage in normal colon cells.Mechanistically,the results showed that5-hydroxytryptamine 2B receptor(HTR2B)and its coupling protein G protein subunit alpha q(Gaq)were highly distributed in CRC cells.Ari had a strong affinity with HTR2B and inhibited HTR2B downstream signaling.Blockade of HTR2B signaling suppressed the growth of CRC cells,but HTR2B was not found to have independent anticancer activity.Interestingly,the binding of Gaq to HTR2B was decreased after Ari treatment.Knockdown of Gaq not only restricted CRC cell growth,but also directly affected the antiCRC efficacy of Ari.Moreover,an interaction between Ari and Gaq was found in that the mutation at amino acid 190 of Gaq reduced the efficacy of Ari.Thus,these results confirm that Gaq coupled to HTR2B was a potential target of Ari in mediating CRC proliferation.Collectively,this study provides a novel effective strategy for CRC therapy and favorable evidence for promoting Ari as an anticancer agent.展开更多
Objective To observe the effect of electroacupuncture (EA) on learning and memory abilities and expression of N-methyI-D-aspartate receptor subunit (NR2B) in prefrontal cortex in morphine-withdrawal rats and to in...Objective To observe the effect of electroacupuncture (EA) on learning and memory abilities and expression of N-methyI-D-aspartate receptor subunit (NR2B) in prefrontal cortex in morphine-withdrawal rats and to investigate the molecular biological mechanisms. Methods Thirty-six male SD rats were randomly divided into four groups, namely control group (group A), model group (group B), model with acupuncture group (group C) and model with electroacupunture group (group D), with 9 in each group. All rats except those in group A were subcutaneously injected with morphine hydrochloride injectio on the back with daily dosage increased day by day. Naloxone was given 3 h after the last injection to establish the models of morphinewithdrawal rats. After the models were established, the rats were treated with acupuncture and electroacupuncture respectively at bilateral "Shenshu" (肾俞 BL 23) and "Zusanli" (足三里 ST 36) for 15 min per time, once daily for 6 days. Space learning and memory abilities of the rats were measured by Morris water maze, and protein and gene expression levels of NR2B in prefrontal cortex were measured by Western Blot and RT-PCR. Results In place navigation test, the escape latency in group B, group C and group D was significantly prolonged compared with that of group A (P〈0.01), the escape latency in group C and group D was significantly shortened compared with that of group B (P〈0.01) and the escape latency in group D was significantly shortened compared with that of group C (P〈0.05); during spatial probe test, the number of times crossing the platform of group B, group C and group D decreased compared with that of group A (P〈0.01), and compared with group B, the number of times crossing the platform of group C increased and the number of group D significantly increased (P〈0.01). Decreased protein expression level of NR2B was found in group B when compared with that of group A (P〈0.01), increased protein expression levels of NR2B were found in group C and group D when compared with that of group B (P〈0.01), however, the expression level in group D was higher than that in group C (P〈0.01). mRNA expression level of NR2B in prefrontal cortex in morphine-withdrawal rats decreased (P〈0.05), however, compared with that of group B, the expression level increased in group D (P〈0.05), and there was no statistical significance in increased expression level in group C (P〉0.05). Conclusion Acupuncture and eletroacupunture can improve space learning and memory abilities of merphine-withdrawal rats, with better efficacy of eletroacupuncture than that of acupuncture, the mechanisms of which may be associated with the regulation of NR2B expression in prefrontal cortex.展开更多
N-Methyl-D-aspartate receptors(NMDARs) play vital roles in the central nervous system,as they are primary mediators of Ca2+influx during synaptic activity.The subunits that compose NMDARs share similar topological ...N-Methyl-D-aspartate receptors(NMDARs) play vital roles in the central nervous system,as they are primary mediators of Ca2+influx during synaptic activity.The subunits that compose NMDARs share similar topological structures but are distinct in distribution and pharmacological properties,as well as physiological and pathological functions,which make the NMDAR one of the most complex and elusive ionotropic glutamate receptors.In this review,we focus on GluN2A and GluN2B,the primary NMDAR subunits in the cortex and hippocampus,and discuss their differences in developmental expression,brain distribution,trafficking,and functional properties during neuronal activity.展开更多
Objective: To study the effects of electroacupuncture(EA) in chronic constrictive injury(CCI) rat model and the expression of N-methyl-D-aspartate receptor type 2B(NR2B) in ipsilateral spinal dorsal horn in rats to ex...Objective: To study the effects of electroacupuncture(EA) in chronic constrictive injury(CCI) rat model and the expression of N-methyl-D-aspartate receptor type 2B(NR2B) in ipsilateral spinal dorsal horn in rats to explore the analgesic mechanisms of EA. Methods: According to the random number table, totally 180 rats were evenly divided into a sham group, a CCI group, and an EA group. CCI model was conducted with four4–0 chromic gut ligatures loosely ligated around the left sciatic nerve 1 cm above the trifurcation. Rats in the EA group received 2 Hz EA therapy bilaterally at acupoints of Zusanli(ST 36) and Sanyinjiao(SP 6) once daily(30 min/d) for 30 days after surgery. Paw withdrawal thresholds(PWTs) were measured on 0(baseline), 1, 3, 7, 15,30 days after surgery. Rats were sacri?ced on 0, 1, 3, 7, 15 and 30 days after surgery, and the L4–5 segments of spinal cord were removed to detect the expression of NR2B by immunohistochemistry and quantitative polymerase chain reaction. Results: PWTs in the CCI group were signi?cantly lower than the sham group at Day1–30 after surgery, and reached its lowest at Day 1(P<0.01). After EA treatment, the PWTs recovered rapidly and were signi?cantly higher than those in the CCI group on 3, 7, 15 and 30 days after surgery(P<0.01). The numbers of NR2B-immunoreactive cells of the CCI group signi?cantly increased after CCI surgery compared with the sham group(P<0.01). Compared with the CCI group, stimulation of EA markedly decreased the numbers of NR2B-immunoreactive cells at Day 3, 7, 15 and 30(P<0.05). In the sham group, NR2B mRNA was expressed at a low level. It increased after CCI surgery, which increased rapidly at Day 7(P<0.01) and reached its peak value at Day 15(P<0.01). After EA stimulation, relative quantity of NR2B mRNA expression was less than that in the CCI group at Day 15 and 30(P<0.05). Conclusions: Low frequency of EA had antinociceptive effect in CCI rat model. The analgesic effects of EA might be through the inhibition of NR2B.展开更多
Tetrandrine is one of the major active ingredients in Menispermaceae Stephania tetrandra S.Moore,and has specific therapeutic effects in ischemic cerebrovascular disease.Its use in vascular dementia has not been studi...Tetrandrine is one of the major active ingredients in Menispermaceae Stephania tetrandra S.Moore,and has specific therapeutic effects in ischemic cerebrovascular disease.Its use in vascular dementia has not been studied fully.Here,we investigated whether tetrandrine would improve behavioral and cellular impairments in a two-vessel occlusion rat model of chronic vascular dementia.Eight weeks after model establishment,rats were injected intraperitoneally with 10 or 30 mg/kg tetrandrine every other day for 4 weeks.Behavioral assessment in the Morris water maze showed that model rats had longer escape latencies in training trials,and spent less time swimming in the target quadrant in probe trials,than sham-operated rats.However,rats that had received tetrandrine showed shorter escape latencies and longer target quadrant swimming time than untreated model rats.Hematoxylin-eosin and Nissl staining revealed less neuronal necrosis and pathological damage,and more living cells,in the hippocampus of rats treated with tetrandrine than in untreated model rats.Western blot assay showed that interleukin-1β expression,and phosphorylation of the N-methyl-D-aspartate 2B receptor at tyrosine 1472,were lower in model rats that received tetrandrine than in those that did not.The present findings suggest that tetrandrine may be neuroprotective in chronic vascular dementia by reducing interleukin-1β expression,N-methyl-D-aspartate receptor 2B phosphorylation at tyrosine 1472,and neuronal necrosis.展开更多
基金supported by National Natural Science Foundation of China,No. 30500482
文摘Status epilepticus was induced via intraperitoneal injection of lithium-pilocarpine.The inhibitory effects of propofol on status epilepticus in rats were judged based on observation of behavior,electroencephalography and 24-hour survival rate.Propofol(12.5-100 mg/kg) improved status epilepticus in a dose-dependent manner,and significantly reduced the number of deaths within 24 hours of lithium-pilocarpine injection.Western blot results showed that,24 hours after induction of status epilepticus,the levels of N-methyl-D-aspartate receptor 2A and 2B subunits were significantly increased in rat cerebral cortex and hippocampus.Propofol at 50 mg/kg significantly suppressed the increase in N-methyl-D-aspartate receptor 2B subunit levels,but not the increase in N-methyl-D-aspartate receptor 2A subunit levels.The results suggest that propofol can effectively inhibit status epilepticus induced by lithium-pilocarpine.This effect may be associated with downregulation of N-methyl-D-aspartate receptor 2B subunit expression after seizures.
基金supported by a grant from the National Natural Science Foundation of China (No. 81001237)
文摘Objective To study the effect of chronic noise exposure on expression of N-methyI-D-aspartic acid receptor 2B (NR2B) and tau phosphorylation in hippocampus of rats. Methods Twenty-four male SD rats were divided in control group and chronic noise exposure group. NR2B expression and tau phosphorylation in hippocampus of rats were detected after chronic noise exposure (100 dB SPL white noise, 4 h/dx30d) and their mechanisms underlying neuronal apoptosis in hippocampus of rats with TUNEL staining. Results The NR2B expression decreased significantly after chronic noise exposure which resulted in tau hyperphosphorylation and neural apoptosis in hippocampus of rats. Immunohistochemistry showed that the tau hyperphosphorylation was most prominent in dentate gyrus (DG) and CA1 region of rat hippocampus. Conclusion The abnormality of neurotransmitter system, especially Glu and NR2B containing NMDA receptor, and tau hyperphosphorylation in hippocampus of rats, may play a role in chronic noise-induced neural apoptosis and cognition impairment.
基金the Natural Science Foundation of Guangdong Province,No.07000059the Science and Technology Development Program of Guangzhou,No.2010Y1-C301the Science and Technology Development Program of Guangdong Province,No.2010B031600123
文摘Spinal dorsal horn N-Methyl-D-aspartic acid receptor 2B (NR2B) overexpression plays an important role in the production and maintenance of neuropathic pain. Because small interfering RNA (siRNA) can inhibit NR2B expression, siRNA may provide a novel approach to treat neuropathic pain and possibly nerve injury. However, an efficient and safe vector for NR2B siRNA has not been discovered. This study shows that a water soluble lipopolymer (WSLP) comprised of low molecular weight polyethyleneimine (PEI) and cholesterol can deliver siRNA targeting NR2B for the treatment of neuropathic pain. Results show that intrathecal injection of WSLP/siRNA complexes for 3 days inhibit NR2B gene expression with reductions in mRNA and protein levels by 59% and 54%, respectively, compared with control rats (P 〈 0.01). Injection of WSLP complexed with scrambled siRNA, or PEI with siRNA did not show this inhibitory effect. Moreover, injection of WSLP/siRNA complexes significantly relieved neuropathic pain at 3, 7, 12, and 21 days, while injection of WSLP with scrambled siRNA or PEI with siRNA did not. These results demonstrate that WSLP can efficiently deliver siRNA targeting NR2B in vivo and relieve neuropathic pain.
基金supported by the National Natural Science Foundation of China (30900444,31070973,30870835,31121061 and 30830044)
文摘Objective The rostral anterior cingulate cortex (rACC) is implicated in processing the emotional component of pain. N-methyl-D-aspartate receptors (NMDARs) are highly expressed in the rACC and mediate painrelated affect by activating a signaling pathway that involves cyclic adenosine monophosphate (cAMP)/protein ki- nase A (PKA) and/or extracellular regulated kinase (ERK)/cAMP-response element-binding protein (CREB). The present study investigated the contributions of the NMDAR glycine site and GluN2B subunit to the activation of ERK and CREB both in vitro and in vivo in rat rACC. Methods Immunohistochemistry and Western blot analy- sis were used to separately assess the expression of phospho-ERK (pERK) and phospho-CREB (pCREB) in vitro and in vivo. Double immunostaining was also used to determine the colocalization of pERK and pCREB. Results Both bath application of NMDA in brain slices in vitro and intraplantar injection of formalin into the rat hindpaw in vivo induced significant up-regulation of pERK and pCREB in the rACC, which was inhibited by the NMDAR antago- nist DL-2-amino-5-phospho-novaleric acid. Selective blockade of the NMDAR GluN2B subunit and the glycine- binding site, or degradation of endogenous D-serine, a co-agonist for the glycine site, significantly decreased the up- regulation of pERK and pCREB expression in the rACC. Further, the activated ERK predominantly colocalized with CREB. Conclusion Either the glycine site or the GluN2B subunit of NMDARs participates in the phosphorylation of ERK and CREB induced by bath application of NMDA in brain slices or hindpaw injection of 5% formalin in rats, and these might be fundamental molecular mechanisms underlying pain affect.
基金supported by National Health Institute(NIH)grant NS099596(to LW and SPY),NS114221(to LW and SPY)Veterans Affair(VA)SPiRE grant RX003865(to SPY)+1 种基金supported by the O.Wayne Rollins Endowment Fund(to SPY)John E.Steinhaus Endowment Fund(to LW)。
文摘Stroke and Alzheimer's disease are common neurological disorders and often occur in the same individuals.The comorbidity of the two neurological disorders represents a grave health threat to older populations.This review presents a brief background of the development of novel concepts and their clinical potentials.The activity of glutamatergic N-methyl-D-aspartate receptors and N-methyl-D-aspartate receptor-mediated Ca^(2+)influx is critical for neuronal function.An ischemic insult induces prompt and excessive glutamate release and drastic increases of intracellular Ca^(2+)mainly via N-methyl-D-aspartate receptors,particularly of those at the extrasynaptic site.This Ca^(2+)-evoked neuronal cell death in the ischemic core is dominated by necrosis within a few hours and days known as acute excitotoxicity.Furthermore,mild but sustained Ca^(2+)increases under neurodegenerative conditions such as in the distant penumbra of the ischemic brain and early stages of Alzheimer's disease are not immediately toxic,but gradually set off deteriorating Ca^(2+)-dependent signals and neuronal cell loss mostly because of activation of programmed cell death pathways.Based on the Ca^(2+)hypothesis of Alzheimer's disease and recent advances,this Ca^(2+)-activated“silent”degenerative excitotoxicity evolves from years to decades and is recognized as a unique slow and chronic neuropathogenesis.The N-methyl-D-aspartate receptor subunit GluN3A,primarily at the extrasynaptic site,serves as a gatekeeper for the N-methyl-D-aspartate receptor activity and is neuroprotective against both acute and chronic excitotoxicity.Ischemic stroke and Alzheimer's disease,therefore,share an N-methyl-D-aspartate receptor-and Ca^(2+)-mediated mechanism,although with much different time courses.It is thus proposed that early interventions to control Ca^(2+)homeostasis at the preclinical stage are pivotal for individuals who are susceptible to sporadic late-onset Alzheimer's disease and Alzheimer's disease-related dementia.This early treatment simultaneously serves as a preconditioning therapy against ischemic stroke that often attacks the same individuals during abnormal aging.
基金supported by the National Natural Science Foundation of China,No.81373705the Natural Science Foundation of Hunan Province in China,No.13JJ3030
文摘Bushen Tiansui decoction is composed of six traditional Chinese medicines:Herba Epimedii,Radix Polygoni multiflori,Plastrum testudinis,Fossilia Ossis Mastodi,Radix Polygalae,and Rhizoma Acorus tatarinowii.Because Bushen Tiansui decoction is effective against amyloid beta(Aβ) toxicity,we hypothesized that it would reduce hippocampal synaptic damage and improve cognitive function in Alzheimer's disease.To test this hypothesis,we used a previously established animal model of Alzheimer's disease,that is,microinjection of aggregated Aβ25–35 into the bilateral brain ventricles of Sprague-Dawley rats.We found that long-term(28 days) oral administration of Bushen Tiansui decoction(0.563,1.688,and 3.375 g/m L;4 m L/day) prevented synaptic loss in the hippocampus and increased the expression levels of synaptic proteins,including postsynaptic density protein 95,the N-methyl-D-aspartate receptor 2 B subunit,and Shank1.These results suggested that Bushen Tiansui decoction can protect synapses by maintaining the expression of these synaptic proteins.Bushen Tiansui decoction also ameliorated measures reflecting spatial learning and memory deficits that were observed in the Morris water maze(i.e.,increased the number of platform crossings and the amount of time spent in the target quadrant and decreased escape latency) following intraventricular injections of aggregated Aβ25–35 compared with those measures in untreated Aβ_(25–35)-injected rats.Overall,these results provided evidence that further studies on the prevention and treatment of dementia with this traditional Chinese medicine are warranted.
基金supported by the National Natural Science Foundation of China,No.81303097,81373794
文摘Damage to synaptic plasticity induced by neurotoxicity of amyloid-beta is regarded to be one of the pathological mechanisms of learning and memory disabilities in Alzheimer's disease patients. This study assumed that the damage of amyloid-beta to learning and memory abilities was strongly associated with the changes in the Fyn/N-methyl-D-aspartate receptor 2B (NR2B) expression. An APP695V7171 transgenic mouse model of Alzheimer's disease was used and treatment with tetrahydroxy-stilbene glucoside was administered intragas- trically. Results showed that intragastric administration of tetrahydroxy-stilbene glucoside improved the learning and memory abilities of the transgenic mice through increasing NR2B receptors and Fyn expression. It also reversed parameters for synaptic interface structure of gray type I. These findings indicate that tetrahydroxy stilbene glucoside has protective effects on the brain, and has prospects for its clinical application to improve the learning and memory abilities and treat Alzheimer's disease.
文摘To stop the progression of Alzheimer's disease in the early stage, it is necessary to identify new therapeutic targets. We examined striatal-enriched phosphatase 61 expression in the brain tissues of 12-month-old APPswe/PSEN1dE9 transgenic mice. Immunohistochemistry showed that striatal-enriched phosphatase 61 protein expression was significantly increased but phosphorylated N-methyl-D-aspartate receptor 2B levels were significantly decreased in the cortex and hippocampus of APPswe/PSEN1dE9 transgenic mice. Western blotting of a cell model of Alzheimer's disease consisting of amyloid-beta peptide (1-42)-treated C57BL/6 mouse cortical neurons in vitro showed that valeric acid (AP5), an N-methyl-D-aspartate receptor antagonist, significantly inhibited amyloidbeta 1-42-induced increased activity of striatal-enriched phosphatase 61. In addition, the phosphorylation of N-methyl-D-aspartate receptor 2B at Tyr1472 was impaired in amyloid-beta 1-42-treated cortical neurons, but knockdown of striatal-enriched phosphatase 61 enhanced the phosphorylation of N-methyl-D-aspartate receptor 2B. Collectively, these findings indicate that striatal-enriched phosphatase 61 can disturb N-methyl-D-aspartate receptor transport and inhibit the progression of learning and study disturbances induced by Alzheimer's disease. Thus, striatal-enriched phosphatase 61 may represent a new target for inhibiting the progression of Alzheimer's disease.
基金supported by Chongqing basic research and frontier exploration project(cstc2022ycjh-bgzxm0119,China)。
文摘Colorectal cancer(CRC)is a type of malignant tumor that seriously threatens human health and life,and its treatment has always been a difficulty and hotspot in research.Herein,this study for the first time reports that antipsychotic aripiprazole(Ari)against the proliferation of CRC cells both in vitro and in vivo,but with less damage in normal colon cells.Mechanistically,the results showed that5-hydroxytryptamine 2B receptor(HTR2B)and its coupling protein G protein subunit alpha q(Gaq)were highly distributed in CRC cells.Ari had a strong affinity with HTR2B and inhibited HTR2B downstream signaling.Blockade of HTR2B signaling suppressed the growth of CRC cells,but HTR2B was not found to have independent anticancer activity.Interestingly,the binding of Gaq to HTR2B was decreased after Ari treatment.Knockdown of Gaq not only restricted CRC cell growth,but also directly affected the antiCRC efficacy of Ari.Moreover,an interaction between Ari and Gaq was found in that the mutation at amino acid 190 of Gaq reduced the efficacy of Ari.Thus,these results confirm that Gaq coupled to HTR2B was a potential target of Ari in mediating CRC proliferation.Collectively,this study provides a novel effective strategy for CRC therapy and favorable evidence for promoting Ari as an anticancer agent.
基金Supported by Project of Youth Science Foundation of Heilongjiang Province of China:QC 2011 C 040Project of Harbin Science and Technology Bureau:2012RFQX S 052
文摘Objective To observe the effect of electroacupuncture (EA) on learning and memory abilities and expression of N-methyI-D-aspartate receptor subunit (NR2B) in prefrontal cortex in morphine-withdrawal rats and to investigate the molecular biological mechanisms. Methods Thirty-six male SD rats were randomly divided into four groups, namely control group (group A), model group (group B), model with acupuncture group (group C) and model with electroacupunture group (group D), with 9 in each group. All rats except those in group A were subcutaneously injected with morphine hydrochloride injectio on the back with daily dosage increased day by day. Naloxone was given 3 h after the last injection to establish the models of morphinewithdrawal rats. After the models were established, the rats were treated with acupuncture and electroacupuncture respectively at bilateral "Shenshu" (肾俞 BL 23) and "Zusanli" (足三里 ST 36) for 15 min per time, once daily for 6 days. Space learning and memory abilities of the rats were measured by Morris water maze, and protein and gene expression levels of NR2B in prefrontal cortex were measured by Western Blot and RT-PCR. Results In place navigation test, the escape latency in group B, group C and group D was significantly prolonged compared with that of group A (P〈0.01), the escape latency in group C and group D was significantly shortened compared with that of group B (P〈0.01) and the escape latency in group D was significantly shortened compared with that of group C (P〈0.05); during spatial probe test, the number of times crossing the platform of group B, group C and group D decreased compared with that of group A (P〈0.01), and compared with group B, the number of times crossing the platform of group C increased and the number of group D significantly increased (P〈0.01). Decreased protein expression level of NR2B was found in group B when compared with that of group A (P〈0.01), increased protein expression levels of NR2B were found in group C and group D when compared with that of group B (P〈0.01), however, the expression level in group D was higher than that in group C (P〈0.01). mRNA expression level of NR2B in prefrontal cortex in morphine-withdrawal rats decreased (P〈0.05), however, compared with that of group B, the expression level increased in group D (P〈0.05), and there was no statistical significance in increased expression level in group C (P〉0.05). Conclusion Acupuncture and eletroacupunture can improve space learning and memory abilities of merphine-withdrawal rats, with better efficacy of eletroacupuncture than that of acupuncture, the mechanisms of which may be associated with the regulation of NR2B expression in prefrontal cortex.
基金supported by grants from the National Basic Research Development Program of China(2010CB912002)the National Natural Science Foundation of China(30730038 and 81171164)
文摘N-Methyl-D-aspartate receptors(NMDARs) play vital roles in the central nervous system,as they are primary mediators of Ca2+influx during synaptic activity.The subunits that compose NMDARs share similar topological structures but are distinct in distribution and pharmacological properties,as well as physiological and pathological functions,which make the NMDAR one of the most complex and elusive ionotropic glutamate receptors.In this review,we focus on GluN2A and GluN2B,the primary NMDAR subunits in the cortex and hippocampus,and discuss their differences in developmental expression,brain distribution,trafficking,and functional properties during neuronal activity.
基金Supported by the Zhejiang Provincial Natural Science Foundation of China(No.LY14H270007)。
文摘Objective: To study the effects of electroacupuncture(EA) in chronic constrictive injury(CCI) rat model and the expression of N-methyl-D-aspartate receptor type 2B(NR2B) in ipsilateral spinal dorsal horn in rats to explore the analgesic mechanisms of EA. Methods: According to the random number table, totally 180 rats were evenly divided into a sham group, a CCI group, and an EA group. CCI model was conducted with four4–0 chromic gut ligatures loosely ligated around the left sciatic nerve 1 cm above the trifurcation. Rats in the EA group received 2 Hz EA therapy bilaterally at acupoints of Zusanli(ST 36) and Sanyinjiao(SP 6) once daily(30 min/d) for 30 days after surgery. Paw withdrawal thresholds(PWTs) were measured on 0(baseline), 1, 3, 7, 15,30 days after surgery. Rats were sacri?ced on 0, 1, 3, 7, 15 and 30 days after surgery, and the L4–5 segments of spinal cord were removed to detect the expression of NR2B by immunohistochemistry and quantitative polymerase chain reaction. Results: PWTs in the CCI group were signi?cantly lower than the sham group at Day1–30 after surgery, and reached its lowest at Day 1(P<0.01). After EA treatment, the PWTs recovered rapidly and were signi?cantly higher than those in the CCI group on 3, 7, 15 and 30 days after surgery(P<0.01). The numbers of NR2B-immunoreactive cells of the CCI group signi?cantly increased after CCI surgery compared with the sham group(P<0.01). Compared with the CCI group, stimulation of EA markedly decreased the numbers of NR2B-immunoreactive cells at Day 3, 7, 15 and 30(P<0.05). In the sham group, NR2B mRNA was expressed at a low level. It increased after CCI surgery, which increased rapidly at Day 7(P<0.01) and reached its peak value at Day 15(P<0.01). After EA stimulation, relative quantity of NR2B mRNA expression was less than that in the CCI group at Day 15 and 30(P<0.05). Conclusions: Low frequency of EA had antinociceptive effect in CCI rat model. The analgesic effects of EA might be through the inhibition of NR2B.
基金supported by the National Natural Science Foundation of China,No.81070886
文摘Tetrandrine is one of the major active ingredients in Menispermaceae Stephania tetrandra S.Moore,and has specific therapeutic effects in ischemic cerebrovascular disease.Its use in vascular dementia has not been studied fully.Here,we investigated whether tetrandrine would improve behavioral and cellular impairments in a two-vessel occlusion rat model of chronic vascular dementia.Eight weeks after model establishment,rats were injected intraperitoneally with 10 or 30 mg/kg tetrandrine every other day for 4 weeks.Behavioral assessment in the Morris water maze showed that model rats had longer escape latencies in training trials,and spent less time swimming in the target quadrant in probe trials,than sham-operated rats.However,rats that had received tetrandrine showed shorter escape latencies and longer target quadrant swimming time than untreated model rats.Hematoxylin-eosin and Nissl staining revealed less neuronal necrosis and pathological damage,and more living cells,in the hippocampus of rats treated with tetrandrine than in untreated model rats.Western blot assay showed that interleukin-1β expression,and phosphorylation of the N-methyl-D-aspartate 2B receptor at tyrosine 1472,were lower in model rats that received tetrandrine than in those that did not.The present findings suggest that tetrandrine may be neuroprotective in chronic vascular dementia by reducing interleukin-1β expression,N-methyl-D-aspartate receptor 2B phosphorylation at tyrosine 1472,and neuronal necrosis.