This paper reports that the yellow luminescence intensity of N-polar GaN Epi-layers is much lower than that of Ga-polar ones due to the inverse polarity, and reduces drastically in the N-polar unintentionally-doped Ga...This paper reports that the yellow luminescence intensity of N-polar GaN Epi-layers is much lower than that of Ga-polar ones due to the inverse polarity, and reduces drastically in the N-polar unintentionally-doped GaN after etching in KOH solution. The ratio of yellow luminescence intensity to band-edge emission intensity decreases sharply with the etching time. The full width at half maximum of x-ray diffraction of (10-12) plane falls sharply after etching, and the surface morphology characterized by scanning electron microscope shows a rough surface that changes with the etching time. The mechanism for the generation of the yellow luminescence are explained in details.展开更多
基金supported by the National Key Science & Technology Special Project (Grant No. 2008ZX01002-002)the Major Programand Key Program of National Natural Science Foundation of China (Grant Nos. 60890191 and 60736033)the Chinese Advance Research Program of Science and Technology (Grant Nos. 51308040301,51308030102,51311050112,and 51323030207)
文摘This paper reports that the yellow luminescence intensity of N-polar GaN Epi-layers is much lower than that of Ga-polar ones due to the inverse polarity, and reduces drastically in the N-polar unintentionally-doped GaN after etching in KOH solution. The ratio of yellow luminescence intensity to band-edge emission intensity decreases sharply with the etching time. The full width at half maximum of x-ray diffraction of (10-12) plane falls sharply after etching, and the surface morphology characterized by scanning electron microscope shows a rough surface that changes with the etching time. The mechanism for the generation of the yellow luminescence are explained in details.