The expressions of HBV X gene and ets-2, IGF-I, c-myc and N-ras were studied in 7 pairs of human primary hepatocellular carcinoma (PHC) and tumor-adjacent tissues, using RNA hybridization and im-munoblot methods. The ...The expressions of HBV X gene and ets-2, IGF-I, c-myc and N-ras were studied in 7 pairs of human primary hepatocellular carcinoma (PHC) and tumor-adjacent tissues, using RNA hybridization and im-munoblot methods. The results showed that specific 17 and 28 kD HBV X gene products (HBxAg) were existed in a portion of PHC and tumor-adjacent tissues. The 17 kD HBxAg was detected in the sera of 3 patients who also had 17 kD HBxAg in their liver tissues. Multiple expressions of oncogenes such as ets-2, c-myc and N-ras were observed in PHC and tumor-adjacent tissues that had HBxAg expressed, indicating HBxAg might function as a transactivator in the course of intracellular proto-oncogene activation. It is also observed that in some tumor-adjacnet tissues the expressions of ets-2, c-myc and N-ras were higher than those in corresponding PHC. The relationship of HBxAg to the expression of est-2, IGF-Ⅱ, c-myc and their possible roles in the carcinogenesis of PHC are discussed.展开更多
In this research, we investigated the expression of C myc and N-ras mRNAs on 21 cases paraffin- embedded tissue sections of hepatocellular carcinoma(HCC) using insitu hybridization technique with biotinylated labelle...In this research, we investigated the expression of C myc and N-ras mRNAs on 21 cases paraffin- embedded tissue sections of hepatocellular carcinoma(HCC) using insitu hybridization technique with biotinylated labelled cDNA probes. Of 21 cases of hepatoma , C-myc mRNA was positive-expressed in 9 cases(42. 9 % ) and N-ras positive in 4 cases ( 19% ) in hepatoma cells, and C-myc and N-ras positive in 4 and 1 cases respectively in peritumor hepatocytes. C- myc mRNAs were localized within cytoplasms of both hepatoma cells and peritumor hepatocytes. However , the positive intensities of C-myc and N-ros mRNAs in hepatoma cells were much greater than those in peritumor hepatocytes. The results indicated that Cmyc and N-ras oncogenes were overexpressed in HCC, and may play an important role in coordinatively maintaince of the malignant phenotypes in HCC.展开更多
BACKGROUND Alzheimer’s disease(AD)is a neurodegenerative condition characterized by oxidative stress and neuroinflammation.Tanshinone ⅡA(Tan-ⅡA),a bioactive compound isolated from Salvia miltiorrhiza plants,has sho...BACKGROUND Alzheimer’s disease(AD)is a neurodegenerative condition characterized by oxidative stress and neuroinflammation.Tanshinone ⅡA(Tan-ⅡA),a bioactive compound isolated from Salvia miltiorrhiza plants,has shown potential neuroprotective effects;however,the mechanisms underlying such a function remain unclear.AIM To investigate potential Tan-ⅡA neuroprotective effects in AD and to elucidate their underlying mechanisms.METHODS Hematoxylin and eosin staining was utilized to analyze structural brain tissue morphology.To assess changes in oxidative stress and neuroinflammation,we performed enzyme-linked immunosorbent assay and western blotting.Additionally,the effect of Tan-ⅡA on AD cell models was evaluated in vitro using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay.Genetic changes related to the long non-coding RNA(lncRNA)nuclear-enriched abundant transcript 1(NEAT1)/microRNA(miRNA,miR)-291a-3p/member RAS oncogene family Rab22a axis were assessed through reverse transcription quantitative polymerase chain reaction.RESULTS In vivo,Tan-ⅡA treatment improved neuronal morphology and attenuated oxidative stress and neuroinflammation in the brain tissue of AD mice.In vitro experiments showed that Tan-ⅡA dose-dependently ameliorated the amyloid-beta 1-42-induced reduction of neural stem cell viability,apoptosis,oxidative stress,and neuroinflammation.In this process,the lncRNA NEAT1-a potential therapeutic target-is highly expressed in AD mice and downregulated via Tan-ⅡA treatment.Mechanistically,NEAT1 promotes the transcription and translation of Rab22a via miR-291a-3p,which activates nuclear factor kappa-B(NF-κB)signaling,leading to activation of the pro-apoptotic B-cell lymphoma 2-associated X protein and inhibition of the anti-apoptotic B-cell lymphoma 2 protein,which exacerbates AD.Tan-ⅡA intervention effectively blocked this process by inhibiting the NEAT1/miR-291a-3p/Rab22a axis and NF-κB signaling.CONCLUSION This study demonstrates that Tan-ⅡA exerts neuroprotective effects in AD by modulating the NEAT1/miR-291a-3p/Rab22a/NF-κB signaling pathway,serving as a foundation for the development of innovative approaches for AD therapy.展开更多
BACKGROUND Epidermal growth factor receptor(EGFR)mutation and c-ros oncogene 1(ROS1)rearrangement are key genetic alterations and predictive tumor markers for non-small cell lung cancer(NSCLC)and are typically conside...BACKGROUND Epidermal growth factor receptor(EGFR)mutation and c-ros oncogene 1(ROS1)rearrangement are key genetic alterations and predictive tumor markers for non-small cell lung cancer(NSCLC)and are typically considered to be mutually exc-lusive.EGFR/ROS1 co-mutation is a rare event,and the standard treatment appr-oach for such cases is still equivocal.CASE SUMMARY Herein,we report the case of a 64-year-old woman diagnosed with lung adenocar-cinoma,with concomitant EGFR L858R mutation and ROS1 rearrangement.The patient received two cycles of chemotherapy after surgery,but the disease prog-ressed.Following 1-month treatment with gefitinib,the disease progressed again.However,after switching to crizotinib,the lesion became stable.Currently,crizotinib has been administered for over 53 months with a remarkable treatment effect.CONCLUSION The efficacy of EGFR tyrosine kinase inhibitors and crizotinib was vastly different in this NSCLC patient with EGFR/ROS1 co-mutation.This report will aid future treatment of such patients.展开更多
Background:Oral squamous cell carcinoma(OSCC)represents a prevalent malignancy in the oral and maxillofacial area,having a considerable negative impact on both the quality of life and overall survival of affected indi...Background:Oral squamous cell carcinoma(OSCC)represents a prevalent malignancy in the oral and maxillofacial area,having a considerable negative impact on both the quality of life and overall survival of affected individuals.Our research endeavors to leverage bioinformatic approaches to elucidate oncogenic signaling pathways,with the ultimate goal of gaining deeper insights into the molecular underpinnings of OSCC pathogenesis,and thus laying the groundwork for the development of more effective therapeutic and preventive strategies.Methods:Differential expression analysis was performed on mRNA data from tumor and normal tissue groups to identify genes associated with OSCC,using The Cancer Genome Atlas database.Predictions of oncogenic signaling pathways linked to differentially expressedmRNAs were made,and these results were presented visually using R software,using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichments.Results:GO and KEGG analyses of 2938 differentially expressed genes in OSCC highlighted their significant involvement in various biological processes.Notably,these processes were related to the extracellular matrix,structural organization,connective tissue development,and cell cycle regulation.Conclusions:The comprehensive exploration of gene expression patterns provides valuable insights into potential oncogenic mechanisms in OSCC.展开更多
文摘The expressions of HBV X gene and ets-2, IGF-I, c-myc and N-ras were studied in 7 pairs of human primary hepatocellular carcinoma (PHC) and tumor-adjacent tissues, using RNA hybridization and im-munoblot methods. The results showed that specific 17 and 28 kD HBV X gene products (HBxAg) were existed in a portion of PHC and tumor-adjacent tissues. The 17 kD HBxAg was detected in the sera of 3 patients who also had 17 kD HBxAg in their liver tissues. Multiple expressions of oncogenes such as ets-2, c-myc and N-ras were observed in PHC and tumor-adjacent tissues that had HBxAg expressed, indicating HBxAg might function as a transactivator in the course of intracellular proto-oncogene activation. It is also observed that in some tumor-adjacnet tissues the expressions of ets-2, c-myc and N-ras were higher than those in corresponding PHC. The relationship of HBxAg to the expression of est-2, IGF-Ⅱ, c-myc and their possible roles in the carcinogenesis of PHC are discussed.
文摘In this research, we investigated the expression of C myc and N-ras mRNAs on 21 cases paraffin- embedded tissue sections of hepatocellular carcinoma(HCC) using insitu hybridization technique with biotinylated labelled cDNA probes. Of 21 cases of hepatoma , C-myc mRNA was positive-expressed in 9 cases(42. 9 % ) and N-ras positive in 4 cases ( 19% ) in hepatoma cells, and C-myc and N-ras positive in 4 and 1 cases respectively in peritumor hepatocytes. C- myc mRNAs were localized within cytoplasms of both hepatoma cells and peritumor hepatocytes. However , the positive intensities of C-myc and N-ros mRNAs in hepatoma cells were much greater than those in peritumor hepatocytes. The results indicated that Cmyc and N-ras oncogenes were overexpressed in HCC, and may play an important role in coordinatively maintaince of the malignant phenotypes in HCC.
基金Supported by 2020 Guangxi Zhuang Autonomous Region Health Care Commission Self-Financing Research Projects,No.Z202000962023 Guangxi University Young and Middle-Aged Teachers’Basic Research Ability Improvement Project,No.2023KY0091+1 种基金National Natural Science Foundation of China,No.82260241the Natural Science Foundation of Guangxi Province,No.2015GXNSFAA139171 and No.2020GXNSFAA259053.
文摘BACKGROUND Alzheimer’s disease(AD)is a neurodegenerative condition characterized by oxidative stress and neuroinflammation.Tanshinone ⅡA(Tan-ⅡA),a bioactive compound isolated from Salvia miltiorrhiza plants,has shown potential neuroprotective effects;however,the mechanisms underlying such a function remain unclear.AIM To investigate potential Tan-ⅡA neuroprotective effects in AD and to elucidate their underlying mechanisms.METHODS Hematoxylin and eosin staining was utilized to analyze structural brain tissue morphology.To assess changes in oxidative stress and neuroinflammation,we performed enzyme-linked immunosorbent assay and western blotting.Additionally,the effect of Tan-ⅡA on AD cell models was evaluated in vitro using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay.Genetic changes related to the long non-coding RNA(lncRNA)nuclear-enriched abundant transcript 1(NEAT1)/microRNA(miRNA,miR)-291a-3p/member RAS oncogene family Rab22a axis were assessed through reverse transcription quantitative polymerase chain reaction.RESULTS In vivo,Tan-ⅡA treatment improved neuronal morphology and attenuated oxidative stress and neuroinflammation in the brain tissue of AD mice.In vitro experiments showed that Tan-ⅡA dose-dependently ameliorated the amyloid-beta 1-42-induced reduction of neural stem cell viability,apoptosis,oxidative stress,and neuroinflammation.In this process,the lncRNA NEAT1-a potential therapeutic target-is highly expressed in AD mice and downregulated via Tan-ⅡA treatment.Mechanistically,NEAT1 promotes the transcription and translation of Rab22a via miR-291a-3p,which activates nuclear factor kappa-B(NF-κB)signaling,leading to activation of the pro-apoptotic B-cell lymphoma 2-associated X protein and inhibition of the anti-apoptotic B-cell lymphoma 2 protein,which exacerbates AD.Tan-ⅡA intervention effectively blocked this process by inhibiting the NEAT1/miR-291a-3p/Rab22a axis and NF-κB signaling.CONCLUSION This study demonstrates that Tan-ⅡA exerts neuroprotective effects in AD by modulating the NEAT1/miR-291a-3p/Rab22a/NF-κB signaling pathway,serving as a foundation for the development of innovative approaches for AD therapy.
基金Supported by Wu Jieping Medical Foundation,No.320.6750.2022-20-25and Chongqing Health Commission,No.[2020]68.
文摘BACKGROUND Epidermal growth factor receptor(EGFR)mutation and c-ros oncogene 1(ROS1)rearrangement are key genetic alterations and predictive tumor markers for non-small cell lung cancer(NSCLC)and are typically considered to be mutually exc-lusive.EGFR/ROS1 co-mutation is a rare event,and the standard treatment appr-oach for such cases is still equivocal.CASE SUMMARY Herein,we report the case of a 64-year-old woman diagnosed with lung adenocar-cinoma,with concomitant EGFR L858R mutation and ROS1 rearrangement.The patient received two cycles of chemotherapy after surgery,but the disease prog-ressed.Following 1-month treatment with gefitinib,the disease progressed again.However,after switching to crizotinib,the lesion became stable.Currently,crizotinib has been administered for over 53 months with a remarkable treatment effect.CONCLUSION The efficacy of EGFR tyrosine kinase inhibitors and crizotinib was vastly different in this NSCLC patient with EGFR/ROS1 co-mutation.This report will aid future treatment of such patients.
文摘Background:Oral squamous cell carcinoma(OSCC)represents a prevalent malignancy in the oral and maxillofacial area,having a considerable negative impact on both the quality of life and overall survival of affected individuals.Our research endeavors to leverage bioinformatic approaches to elucidate oncogenic signaling pathways,with the ultimate goal of gaining deeper insights into the molecular underpinnings of OSCC pathogenesis,and thus laying the groundwork for the development of more effective therapeutic and preventive strategies.Methods:Differential expression analysis was performed on mRNA data from tumor and normal tissue groups to identify genes associated with OSCC,using The Cancer Genome Atlas database.Predictions of oncogenic signaling pathways linked to differentially expressedmRNAs were made,and these results were presented visually using R software,using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichments.Results:GO and KEGG analyses of 2938 differentially expressed genes in OSCC highlighted their significant involvement in various biological processes.Notably,these processes were related to the extracellular matrix,structural organization,connective tissue development,and cell cycle regulation.Conclusions:The comprehensive exploration of gene expression patterns provides valuable insights into potential oncogenic mechanisms in OSCC.