Based on the Hirota bilinear method,this study derived N-soliton solutions,breather solutions,lump solutions and interaction solutions for the(2+1)-dimensional extended Boiti-Leon-Manna-Pempinelli equation.The dynamic...Based on the Hirota bilinear method,this study derived N-soliton solutions,breather solutions,lump solutions and interaction solutions for the(2+1)-dimensional extended Boiti-Leon-Manna-Pempinelli equation.The dynamical characteristics of these solutions were displayed through graphical,particularly revealing fusion and ssion phenomena in the interaction of lump and the one-stripe soliton.展开更多
In this paper, some exact solutions of the (3 + 1)-dimensional variable-coefficient Yu-Toda-Sasa-Fukuyama equation are investigated. By using Hirota’s direct method and symbolic computation, we obtained N-soliton sol...In this paper, some exact solutions of the (3 + 1)-dimensional variable-coefficient Yu-Toda-Sasa-Fukuyama equation are investigated. By using Hirota’s direct method and symbolic computation, we obtained N-soliton solution. By using the long wave limit method, the N-order rational solution can be obtained from N-order soliton solution. Then, through the paired complexification of parameters, the lump solution is obtained from N-order rational solution. Meanwhile, we obtained a hybrid solution between 1-lump solution and N-soliton (N=1,2) by using the long wave limit method and parameter complex. Furthermore, four different sets of three-dimensional graphs of solitons, lump solutions and hybrid solutions are drawn by selecting four different sets of coefficient functions which include one set of constant coefficient function and three sets of variable coefficient functions.展开更多
An explicit N-fold Darboux transformation with multiparameters for nonlinear Schrodinger equation is constructed with the help of its Lax pairs and a reduction technique. According to this Darboux transformation, the ...An explicit N-fold Darboux transformation with multiparameters for nonlinear Schrodinger equation is constructed with the help of its Lax pairs and a reduction technique. According to this Darboux transformation, the solutions of the nonlinear Schrfdinger equation are reduced to solving a linear algebraic system, from which a unified and explicit formulation of N-soliton solutions with multiparameters for the nonlinear Schrfdinger equation is given.展开更多
In this work,using the Hirota bilinear method,N-soliton solution is obtained for Hirota-Satsuma nonlinear evolution equation:u_t - u_(xxt) - 3u_xu_t + u_x = 0.
By means of Hirota method,N-soliton solutions of the modified KdV equation under the Bargmannconstraint are obtained through solving the Bargmann constraint and the related Lax pair and conjugate Lax pair ofthe modifi...By means of Hirota method,N-soliton solutions of the modified KdV equation under the Bargmannconstraint are obtained through solving the Bargmann constraint and the related Lax pair and conjugate Lax pair ofthe modified KdV equation.展开更多
The bilinear form of the (2+1)-dimensional non-isospectral AKNS system is derived. Its N-soliton solutions are obtained by using the Hirota method. As a reduction, a (2+1)-dimensional non-isospectral Schrodinger...The bilinear form of the (2+1)-dimensional non-isospectral AKNS system is derived. Its N-soliton solutions are obtained by using the Hirota method. As a reduction, a (2+1)-dimensional non-isospectral Schrodinger equation and its N-soliton solutions are constructed.展开更多
By the symbolic computation and Hirota method, the bilinear form and an auto-Backlund transformation for a variable-coemcient Korteweg-de Vries equation with nonuniformities are given. Then, the N-solitonic solution i...By the symbolic computation and Hirota method, the bilinear form and an auto-Backlund transformation for a variable-coemcient Korteweg-de Vries equation with nonuniformities are given. Then, the N-solitonic solution in terms of Wronskian form is obtained and verified. In addition, it is shown that the (N - 1)- and N-solitonic solutions satisfy the auto-Backlund transformation through the Wronskian technique.展开更多
Based on the Hirota bilinear form, a simple approach without employing the standard perturbation technique, is presented for constructing a novel N-soliton solution for a (3+1)-dimensional nonlinear evolution equat...Based on the Hirota bilinear form, a simple approach without employing the standard perturbation technique, is presented for constructing a novel N-soliton solution for a (3+1)-dimensional nonlinear evolution equation. Moreover, the novel N-soliton solution is shown to have resonant behavior with the aid of Mathematica.展开更多
In this paper, a nonlocal two-wave interaction system from the Manakov hierarchy is investigated via the Riemann–Hilbert approach. Based on the spectral analysis of the Lax pair, a Riemann–Hilbert problem for the no...In this paper, a nonlocal two-wave interaction system from the Manakov hierarchy is investigated via the Riemann–Hilbert approach. Based on the spectral analysis of the Lax pair, a Riemann–Hilbert problem for the nonlocal two-wave interaction system is constructed. By discussing the solutions of this Riemann–Hilbert problem in both the regular and nonregular cases, we explicitly present the N-soliton solution formula of the nonlocal two-wave interaction system. Moreover,the dynamical behaviour of the single-soliton solution is shown graphically.展开更多
We present new lemmas,theorem and corollaries to construct interactions among higher-order rogue waves,n-periodic waves and n-solitons solutions(n→∞)to the(2+1)-dimensional asymmetric Nizhnik-Novikov-Veselov(ANNV)eq...We present new lemmas,theorem and corollaries to construct interactions among higher-order rogue waves,n-periodic waves and n-solitons solutions(n→∞)to the(2+1)-dimensional asymmetric Nizhnik-Novikov-Veselov(ANNV)equation.Several examples for theories are given by choosing definite interactions of the wave solutions for the model.In particular,we exhibit dynamical interactions between a rogue and a cross bright-dark bell wave,a rogue and a cross-bright bell wave,a rogue and a one-,two-,three-,four-periodic wave.In addition,we also present multi-types interactions between a rogue and a periodic cross-bright bell wave,a rogue and a periodic cross-bright-bark bell wave.Finally,we physically explain such interaction solutions of the model in the 3D and density plots.展开更多
Using the Hirota's bilinear method,some new N-soliton solution are presented for two multidimensional analogues of the m-KdV equation wt+wxxx-6w 2 wx+3 2( w x -1 wy+w-x -1 wz)x=0 and wt+wxxx?6w 2 wx+3 2( wwy+wx-x-...Using the Hirota's bilinear method,some new N-soliton solution are presented for two multidimensional analogues of the m-KdV equation wt+wxxx-6w 2 wx+3 2( w x -1 wy+w-x -1 wz)x=0 and wt+wxxx?6w 2 wx+3 2( wwy+wx-x-1 wy)=0 in view of a different treatment.展开更多
These rational solutions which can be described a kind of algebraic solitary waves which have great potential in applied value in atmosphere and ocean. It has attracted more and more attention recently. In this paper,...These rational solutions which can be described a kind of algebraic solitary waves which have great potential in applied value in atmosphere and ocean. It has attracted more and more attention recently. In this paper, the generalized bilinear method instead of the Hirota bilinear method is used to obtain the rational solutions to the (2 + 1)-dimensional Boiti-Leon-Manna-Pempinelli-like equation (hereinafter referred to as BLMP equation). Meanwhile, the (2 + 1)-dimensional BLMP-like equation is derived on the basis of the generalized bilinear operators D3,x D3,y and D3,t. And the rational solutions to the (2 + 1)-dimensional BLMP-like equation are obtained successively. Finally, with the help of the N-soliton solutions of the (2 + 1)-dimensional BLMP equation, the interactions of the N-soliton solutions can be derived. The results show that the two soliton still maintained the original waveform after happened collision.展开更多
The general bright-dark mixed N-soliton solution of the two-dimensional Maccari system is obtained with the KP hierarchy reduction method. The dynamics of single and two solitons are discussed in detail. Asymptotic an...The general bright-dark mixed N-soliton solution of the two-dimensional Maccari system is obtained with the KP hierarchy reduction method. The dynamics of single and two solitons are discussed in detail. Asymptotic analysis shows that two solitons undergo elastic collision accompanied by a position shift. Furthermore, our analysis on mixed soliton bound states shows that arbitrary higher-order soliton bound states can take place.展开更多
This article investigates the Hirota-Satsuma-Ito equation with variable coefficient using the Hirota bilinear method and the long wave limit method.The equation is proved to be Painlevé integrable by Painlevé...This article investigates the Hirota-Satsuma-Ito equation with variable coefficient using the Hirota bilinear method and the long wave limit method.The equation is proved to be Painlevé integrable by Painlevé analysis.On the basis of the bilinear form,the forms of two-soliton solutions,three-soliton solutions,and four-soliton solutions are studied specifically.The appropriate parameter values are chosen and the corresponding figures are presented.The breather waves solutions,lump solutions,periodic solutions and the interaction of breather waves solutions and soliton solutions,etc.are given.In addition,we also analyze the different effects of the parameters on the figures.The figures of the same set of parameters in different planes are presented to describe the dynamical behavior of solutions.These are important for describing water waves in nature.展开更多
In this paper, we propose a new technique of finding the PDE's traveling wave solutions based on the T-transformations. Using T-representation method we find a new class ofKorteveg-de Vries solution and propose metho...In this paper, we propose a new technique of finding the PDE's traveling wave solutions based on the T-transformations. Using T-representation method we find a new class ofKorteveg-de Vries solution and propose method for studing the multi-solitone solutions of the Korteveg-de Vries type equations.展开更多
Solutions in the Crammian form for a non-isospectral Kadomtsev-Petviashvili equation are derived by means of Pfaffian derivative formulae. Explicit entries of the Crammian are given. Non-isospectral dynamics of the so...Solutions in the Crammian form for a non-isospectral Kadomtsev-Petviashvili equation are derived by means of Pfaffian derivative formulae. Explicit entries of the Crammian are given. Non-isospectral dynamics of the solutions generated from the Crammian are investigated in an analytic way. The solutions obtained can describe line solitons in non-uniform media travelling with time-dependent amplitude and time-dependent direction. In addition, some other solutions have singularities.展开更多
In this paper we consider exact solutions to the KdV equation under the Bargmann constraint. Solutions expressed through exponential polynomials and Wronskians are derived by bilinear approach through solving the Lax ...In this paper we consider exact solutions to the KdV equation under the Bargmann constraint. Solutions expressed through exponential polynomials and Wronskians are derived by bilinear approach through solving the Lax pair under the Bargmann constraint. It is also shown that the potential u in the stationary Sehrodinger equation can be a summation of squares of wave functions from bilinear point of view.展开更多
A nonlocal Boussinesq equation is deduced from the local one by using consistent correlated bang method.To study various exact solutions of the nonlocal Boussinesq equation,it is converted into two local equations whi...A nonlocal Boussinesq equation is deduced from the local one by using consistent correlated bang method.To study various exact solutions of the nonlocal Boussinesq equation,it is converted into two local equations which contain the local Boussinesq equation.From the N-soliton solutions of the local Boussinesq equation,the N-soliton solutions of the nonlocal Boussinesq equation are obtained,among which the(N=2,3,4)-soliton solutions are analyzed with graphs.Some periodic and traveling solutions of the nonlocal Boussinesq equation are derived directly from the known solutions of the local Boussinesq equation.Symmetry reduction solutions of the nonlocal Boussinesq equation are also obtained by using the classical Lie symmetry method.展开更多
We study the propagation of N-soliton bound state in a triangular gradient refractive index waveguide with nonlocal nonlinearity. The study is based on the direct numerical solutions of the model and subsequent eigenv...We study the propagation of N-soliton bound state in a triangular gradient refractive index waveguide with nonlocal nonlinearity. The study is based on the direct numerical solutions of the model and subsequent eigenvalues evolution of the corresponding Zakharov-Shabat spectral problem. In the waveguide with local nonlinearity, the velocity of a single soliton is found to be symmetric around zero and therefore the soliton oscillates periodically inside the waveguide. If the nonlocality is presence in the medium, the periodic motion of soliton is destroyed due to the soliton experiences additional positive acceleration induced by the nonlocality. In the waveguide with the same strength of nonlocality, a higher amplitude soliton experiences higher nonlocality effects, i.e. larger acceleration. Based on this soliton behavior we predict the break up of N-soliton bound state into their single-soliton constituents. We notice that the splitting process does not affect the amplitude of each soliton component.展开更多
In this paper,the N-soliton solutions to the nonlocal reverse space-time Chen-Lee-Liu equation have been derived.Under the nonlocal symmetry reduction to the matrix spectral problem,the nonlocal reverse space-time Che...In this paper,the N-soliton solutions to the nonlocal reverse space-time Chen-Lee-Liu equation have been derived.Under the nonlocal symmetry reduction to the matrix spectral problem,the nonlocal reverse space-time Chen-Lee-Liu equation can be obtained.Based on the spectral problem,the specific matrix Riemann-Hilbert problem is constructed for this nonlocal equation.Through solving this associated Riemann-Hilbert problem,the N-soliton solutions to this nonlocal equation can be obtained in the case of the jump matrix as an identity matrix.展开更多
基金Supported by the National Natural Science Foundation of China(12275172)。
文摘Based on the Hirota bilinear method,this study derived N-soliton solutions,breather solutions,lump solutions and interaction solutions for the(2+1)-dimensional extended Boiti-Leon-Manna-Pempinelli equation.The dynamical characteristics of these solutions were displayed through graphical,particularly revealing fusion and ssion phenomena in the interaction of lump and the one-stripe soliton.
文摘In this paper, some exact solutions of the (3 + 1)-dimensional variable-coefficient Yu-Toda-Sasa-Fukuyama equation are investigated. By using Hirota’s direct method and symbolic computation, we obtained N-soliton solution. By using the long wave limit method, the N-order rational solution can be obtained from N-order soliton solution. Then, through the paired complexification of parameters, the lump solution is obtained from N-order rational solution. Meanwhile, we obtained a hybrid solution between 1-lump solution and N-soliton (N=1,2) by using the long wave limit method and parameter complex. Furthermore, four different sets of three-dimensional graphs of solitons, lump solutions and hybrid solutions are drawn by selecting four different sets of coefficient functions which include one set of constant coefficient function and three sets of variable coefficient functions.
文摘An explicit N-fold Darboux transformation with multiparameters for nonlinear Schrodinger equation is constructed with the help of its Lax pairs and a reduction technique. According to this Darboux transformation, the solutions of the nonlinear Schrfdinger equation are reduced to solving a linear algebraic system, from which a unified and explicit formulation of N-soliton solutions with multiparameters for the nonlinear Schrfdinger equation is given.
基金Foundation item: Supported by the Natural Science Foundation of China(61072147, 11071159) Supported by the Shanghai Leading Academic Discipline Project(J50101) Supported by the Youth Foundation of Zhoukou Normal University(zknuqn200917)
文摘In this work,using the Hirota bilinear method,N-soliton solution is obtained for Hirota-Satsuma nonlinear evolution equation:u_t - u_(xxt) - 3u_xu_t + u_x = 0.
基金Supported by the National Natural Science Foundation of China under Grant Nos.10371070 and 10671121
文摘By means of Hirota method,N-soliton solutions of the modified KdV equation under the Bargmannconstraint are obtained through solving the Bargmann constraint and the related Lax pair and conjugate Lax pair ofthe modified KdV equation.
基金supported by China Postdoctoral Science Foundation and National Natural Science Foundation of China under Grant No.10771207
文摘The bilinear form of the (2+1)-dimensional non-isospectral AKNS system is derived. Its N-soliton solutions are obtained by using the Hirota method. As a reduction, a (2+1)-dimensional non-isospectral Schrodinger equation and its N-soliton solutions are constructed.
基金supported by National Natural Science Foundation of China under Grant Nos.60772023 and 60372095the Key Project of the Ministry of Education under Grant No.106033+2 种基金the Open Fund of the State Key Laboratory of Software Development Environment under Grant No.SKLSDE-07-001Beijing University of Aeronautics and Astronautics,the National Basic Research Program of China(973 Program)under Grant No.2005CB321901the Specialized Research Fund for the Doctoral Program of Higher Education under Grant No.20060006024,the Ministry of Education
文摘By the symbolic computation and Hirota method, the bilinear form and an auto-Backlund transformation for a variable-coemcient Korteweg-de Vries equation with nonuniformities are given. Then, the N-solitonic solution in terms of Wronskian form is obtained and verified. In addition, it is shown that the (N - 1)- and N-solitonic solutions satisfy the auto-Backlund transformation through the Wronskian technique.
文摘Based on the Hirota bilinear form, a simple approach without employing the standard perturbation technique, is presented for constructing a novel N-soliton solution for a (3+1)-dimensional nonlinear evolution equation. Moreover, the novel N-soliton solution is shown to have resonant behavior with the aid of Mathematica.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11331008 and 11522112)
文摘In this paper, a nonlocal two-wave interaction system from the Manakov hierarchy is investigated via the Riemann–Hilbert approach. Based on the spectral analysis of the Lax pair, a Riemann–Hilbert problem for the nonlocal two-wave interaction system is constructed. By discussing the solutions of this Riemann–Hilbert problem in both the regular and nonregular cases, we explicitly present the N-soliton solution formula of the nonlocal two-wave interaction system. Moreover,the dynamical behaviour of the single-soliton solution is shown graphically.
文摘We present new lemmas,theorem and corollaries to construct interactions among higher-order rogue waves,n-periodic waves and n-solitons solutions(n→∞)to the(2+1)-dimensional asymmetric Nizhnik-Novikov-Veselov(ANNV)equation.Several examples for theories are given by choosing definite interactions of the wave solutions for the model.In particular,we exhibit dynamical interactions between a rogue and a cross bright-dark bell wave,a rogue and a cross-bright bell wave,a rogue and a one-,two-,three-,four-periodic wave.In addition,we also present multi-types interactions between a rogue and a periodic cross-bright bell wave,a rogue and a periodic cross-bright-bark bell wave.Finally,we physically explain such interaction solutions of the model in the 3D and density plots.
基金Supported by the National Natural Science Foundation of China(10871132 11074160) Supported by the National Natura Science Foundation of Henan Province(102300410190 092300410202)
文摘Using the Hirota's bilinear method,some new N-soliton solution are presented for two multidimensional analogues of the m-KdV equation wt+wxxx-6w 2 wx+3 2( w x -1 wy+w-x -1 wz)x=0 and wt+wxxx?6w 2 wx+3 2( wwy+wx-x-1 wy)=0 in view of a different treatment.
文摘These rational solutions which can be described a kind of algebraic solitary waves which have great potential in applied value in atmosphere and ocean. It has attracted more and more attention recently. In this paper, the generalized bilinear method instead of the Hirota bilinear method is used to obtain the rational solutions to the (2 + 1)-dimensional Boiti-Leon-Manna-Pempinelli-like equation (hereinafter referred to as BLMP equation). Meanwhile, the (2 + 1)-dimensional BLMP-like equation is derived on the basis of the generalized bilinear operators D3,x D3,y and D3,t. And the rational solutions to the (2 + 1)-dimensional BLMP-like equation are obtained successively. Finally, with the help of the N-soliton solutions of the (2 + 1)-dimensional BLMP equation, the interactions of the N-soliton solutions can be derived. The results show that the two soliton still maintained the original waveform after happened collision.
基金Supported by the Global Change Research Program of China under Grant No 2015CB953904the National Natural Science Foundation of China under Grant Nos 11675054 and 11435005the Shanghai Collaborative Innovation Center of Trustworthy Software for Internet of Things under Grant No ZF1213
文摘The general bright-dark mixed N-soliton solution of the two-dimensional Maccari system is obtained with the KP hierarchy reduction method. The dynamics of single and two solitons are discussed in detail. Asymptotic analysis shows that two solitons undergo elastic collision accompanied by a position shift. Furthermore, our analysis on mixed soliton bound states shows that arbitrary higher-order soliton bound states can take place.
基金This work was supported by the National Natural Science Foundation of China(Grant No.11505090)Research Award Foundation for Outstanding Young Scientists of Shandong Province(Grant No.BS2015SF009)+2 种基金the Doctoral Foundation of Liaocheng University(Grant No.318051413)Liaocheng University Level Science and Technology Research Fund(Grant No.318012018)Discipline with Strong Characteristics of Liaocheng University–Intelligent Science and Technology(Grant No.319462208).
文摘This article investigates the Hirota-Satsuma-Ito equation with variable coefficient using the Hirota bilinear method and the long wave limit method.The equation is proved to be Painlevé integrable by Painlevé analysis.On the basis of the bilinear form,the forms of two-soliton solutions,three-soliton solutions,and four-soliton solutions are studied specifically.The appropriate parameter values are chosen and the corresponding figures are presented.The breather waves solutions,lump solutions,periodic solutions and the interaction of breather waves solutions and soliton solutions,etc.are given.In addition,we also analyze the different effects of the parameters on the figures.The figures of the same set of parameters in different planes are presented to describe the dynamical behavior of solutions.These are important for describing water waves in nature.
文摘In this paper, we propose a new technique of finding the PDE's traveling wave solutions based on the T-transformations. Using T-representation method we find a new class ofKorteveg-de Vries solution and propose method for studing the multi-solitone solutions of the Korteveg-de Vries type equations.
基金Supported by the National Natural Science Foundation of China under Grant No10371070, and the Foundation of Shanghai Education Committee for Shanghai Prospective Excellent Young Teachers.
文摘Solutions in the Crammian form for a non-isospectral Kadomtsev-Petviashvili equation are derived by means of Pfaffian derivative formulae. Explicit entries of the Crammian are given. Non-isospectral dynamics of the solutions generated from the Crammian are investigated in an analytic way. The solutions obtained can describe line solitons in non-uniform media travelling with time-dependent amplitude and time-dependent direction. In addition, some other solutions have singularities.
基金Supported by National Natural Science Foundation of China under Grant Nos. 10871165 and 10671121
文摘In this paper we consider exact solutions to the KdV equation under the Bargmann constraint. Solutions expressed through exponential polynomials and Wronskians are derived by bilinear approach through solving the Lax pair under the Bargmann constraint. It is also shown that the potential u in the stationary Sehrodinger equation can be a summation of squares of wave functions from bilinear point of view.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11975156 and 12175148)the Natural Science Foundation of Zhejiang Province of China(Grant No.LY18A050001)。
文摘A nonlocal Boussinesq equation is deduced from the local one by using consistent correlated bang method.To study various exact solutions of the nonlocal Boussinesq equation,it is converted into two local equations which contain the local Boussinesq equation.From the N-soliton solutions of the local Boussinesq equation,the N-soliton solutions of the nonlocal Boussinesq equation are obtained,among which the(N=2,3,4)-soliton solutions are analyzed with graphs.Some periodic and traveling solutions of the nonlocal Boussinesq equation are derived directly from the known solutions of the local Boussinesq equation.Symmetry reduction solutions of the nonlocal Boussinesq equation are also obtained by using the classical Lie symmetry method.
文摘We study the propagation of N-soliton bound state in a triangular gradient refractive index waveguide with nonlocal nonlinearity. The study is based on the direct numerical solutions of the model and subsequent eigenvalues evolution of the corresponding Zakharov-Shabat spectral problem. In the waveguide with local nonlinearity, the velocity of a single soliton is found to be symmetric around zero and therefore the soliton oscillates periodically inside the waveguide. If the nonlocality is presence in the medium, the periodic motion of soliton is destroyed due to the soliton experiences additional positive acceleration induced by the nonlocality. In the waveguide with the same strength of nonlocality, a higher amplitude soliton experiences higher nonlocality effects, i.e. larger acceleration. Based on this soliton behavior we predict the break up of N-soliton bound state into their single-soliton constituents. We notice that the splitting process does not affect the amplitude of each soliton component.
基金supported by the National Natural Science Foundation of China under Grant No.11975145。
文摘In this paper,the N-soliton solutions to the nonlocal reverse space-time Chen-Lee-Liu equation have been derived.Under the nonlocal symmetry reduction to the matrix spectral problem,the nonlocal reverse space-time Chen-Lee-Liu equation can be obtained.Based on the spectral problem,the specific matrix Riemann-Hilbert problem is constructed for this nonlocal equation.Through solving this associated Riemann-Hilbert problem,the N-soliton solutions to this nonlocal equation can be obtained in the case of the jump matrix as an identity matrix.