A series of N-alkyl or N-aryl chitosan quaternary ammonium salt were prepared using 96% deacetylated chitosan. Their scavenging activities against superoxide anion radical were investigated by chemiluminescence. The I...A series of N-alkyl or N-aryl chitosan quaternary ammonium salt were prepared using 96% deacetylated chitosan. Their scavenging activities against superoxide anion radical were investigated by chemiluminescence. The IC50 values of these compounds range from 280 to 880 μg/mL, which should be attributed to their different substitutes.展开更多
A quaternary ammonium salt covalently linked to chitosan was first used as a catalyst for dimethyl carbonate (DMC) synthesis by the transesterification of propylene carbonate (PC) with methanol. The effects of var...A quaternary ammonium salt covalently linked to chitosan was first used as a catalyst for dimethyl carbonate (DMC) synthesis by the transesterification of propylene carbonate (PC) with methanol. The effects of various reaction variables like reaction time, temperature and pressure on the catalytic performance were also investigated. 54% DMC yield and 71% PC conversion were obtained under the optimal reaction conditions. Notably, the catalyst was able to be reused with retention of high catalytic activity and selectivity. Consequently, the process presented here has great potential for industrial application due to its advantages such as stability, easy preparation from renewable biopolymer, and simple separation from products.展开更多
A series of N-alkyl or N-aryl chitosan quaternary ammonium salts were prepared via Schiffs base intermediates. Quaternization of N-substituted chitosan derivatives was carried out using methyl iodide to produce water-...A series of N-alkyl or N-aryl chitosan quaternary ammonium salts were prepared via Schiffs base intermediates. Quaternization of N-substituted chitosan derivatives was carried out using methyl iodide to produce water-soluble cationic chitosan quaternary ammonium salt. The products were characterized by IR, (HNMR)-H-1 and elemental analysis. The degree of substitution of chitosan quaternary ammonium salt was calculated by elemental analysis.展开更多
文摘A series of N-alkyl or N-aryl chitosan quaternary ammonium salt were prepared using 96% deacetylated chitosan. Their scavenging activities against superoxide anion radical were investigated by chemiluminescence. The IC50 values of these compounds range from 280 to 880 μg/mL, which should be attributed to their different substitutes.
文摘A quaternary ammonium salt covalently linked to chitosan was first used as a catalyst for dimethyl carbonate (DMC) synthesis by the transesterification of propylene carbonate (PC) with methanol. The effects of various reaction variables like reaction time, temperature and pressure on the catalytic performance were also investigated. 54% DMC yield and 71% PC conversion were obtained under the optimal reaction conditions. Notably, the catalyst was able to be reused with retention of high catalytic activity and selectivity. Consequently, the process presented here has great potential for industrial application due to its advantages such as stability, easy preparation from renewable biopolymer, and simple separation from products.
文摘A series of N-alkyl or N-aryl chitosan quaternary ammonium salts were prepared via Schiffs base intermediates. Quaternization of N-substituted chitosan derivatives was carried out using methyl iodide to produce water-soluble cationic chitosan quaternary ammonium salt. The products were characterized by IR, (HNMR)-H-1 and elemental analysis. The degree of substitution of chitosan quaternary ammonium salt was calculated by elemental analysis.