[Objective] This study was conducted to clone and analyze ERECTA-LIKE1 gene in Zea mays by PCR and bioinformatics methods and to construct plant expression vector p Cambia3301-zm ERECTA-LIKE1. [Method] zm ERECTA-LIKE1...[Objective] This study was conducted to clone and analyze ERECTA-LIKE1 gene in Zea mays by PCR and bioinformatics methods and to construct plant expression vector p Cambia3301-zm ERECTA-LIKE1. [Method] zm ERECTA-LIKE1(zm ERL1)gene was obtained using RT-PCR, and physical-chemical properties were analyzed by bioinformatics methods, including domains,transmembrane regions, N-Glycosylation potential sites phosphorylation sites, and etc. [Result] Bioinformatics results showed that zm ERL1 gene was 2 169 bp, which encoded a protein consisting of 722 amino acids, 11 N-glycosylation potential sites and 42 kinase specific phosphorylation sites. According to CDD2.23 and TMHMM Server v. 2.0 software, there were leucine-rich repeats,a PKC domain and a transmembrane region in this protein. The theoretical p I and molecular weight of zm ERL1 encoded protein was 6.20 and 79 184.8 using Compute PI/Mw tool. Furthermore, we constructed the plant expression vector p Cambia3301-zm ERECTA-LIKE1 by subcloning zm ERL1 gene into p Cambia3301 instead of GUS. [Conclusion] The results provide a theoretical basis for the application of zm ERL1 gene in future study.展开更多
基金Supported by the Distinguished Young Scientists Project of Beijing(CIT&TCD201304096)Academic Degrees and Graduate Education Reform and Development Program of Beijing University of Agriculture(5056516002\016)
文摘[Objective] This study was conducted to clone and analyze ERECTA-LIKE1 gene in Zea mays by PCR and bioinformatics methods and to construct plant expression vector p Cambia3301-zm ERECTA-LIKE1. [Method] zm ERECTA-LIKE1(zm ERL1)gene was obtained using RT-PCR, and physical-chemical properties were analyzed by bioinformatics methods, including domains,transmembrane regions, N-Glycosylation potential sites phosphorylation sites, and etc. [Result] Bioinformatics results showed that zm ERL1 gene was 2 169 bp, which encoded a protein consisting of 722 amino acids, 11 N-glycosylation potential sites and 42 kinase specific phosphorylation sites. According to CDD2.23 and TMHMM Server v. 2.0 software, there were leucine-rich repeats,a PKC domain and a transmembrane region in this protein. The theoretical p I and molecular weight of zm ERL1 encoded protein was 6.20 and 79 184.8 using Compute PI/Mw tool. Furthermore, we constructed the plant expression vector p Cambia3301-zm ERECTA-LIKE1 by subcloning zm ERL1 gene into p Cambia3301 instead of GUS. [Conclusion] The results provide a theoretical basis for the application of zm ERL1 gene in future study.