建立了一步式QuEChERS自动提取和净化技术结合气相色谱-串联质谱同时测定风干牦牛肉中15种N-亚硝胺的分析方法。样品水化后,经乙腈提取,加入4.0 g MgSO_(4)和1.0 g NaCl除水,经十八烷基硅烷(C_(18))和N-丙基乙二胺(PSA)填料净化,采用DB-...建立了一步式QuEChERS自动提取和净化技术结合气相色谱-串联质谱同时测定风干牦牛肉中15种N-亚硝胺的分析方法。样品水化后,经乙腈提取,加入4.0 g MgSO_(4)和1.0 g NaCl除水,经十八烷基硅烷(C_(18))和N-丙基乙二胺(PSA)填料净化,采用DB-HeavyWAX色谱柱(30 m×0.25 mm×0.25μm)分离15种N-亚硝胺,在多重反应监测(MRM)模式下进行测定,外标法定量。结果表明,15种N-亚硝胺分离性能良好,在0.1~200μg/L范围内线性关系良好,相关系数(r^(2))≥0.999 0;检出限(LOD)为0.05~0.20μg/kg,定量限(LOQ)为0.10~0.50μg/kg;在1倍、2倍和10倍LOQ 3个添加水平下的平均回收率分别为79.4%~102.1%、80.6%~109.5%、83.0%~110.6%,相对标准偏差(RSD)为0.8%~16.0%。应用建立的方法检测2种不同加工工艺的市售样品,其中7种N-亚硝胺类化合物(N-亚硝基二甲胺、N-亚硝基二异丁胺、N-亚硝基二正丁胺、N-亚硝基甲基苯胺、N-亚硝基乙基苯胺、N-亚硝基吡咯烷、N-亚硝基二苯胺)均有不同程度检出,平均含量为0.08~20.18μg/kg,且熟制风干牦牛肉中N-亚硝胺的检出率和平均含量均高于传统生制风干牦牛肉。该方法实现了前处理的自动化,相较于其他传统方法,操作简单,实验效率高,人为影响因素小,检测灵敏度高,适用于风干牦牛肉中15种N-亚硝胺的快速测定,为研究肉制品中N-亚硝胺的测定提供了方法支持。展开更多
A new methodology for extraction, pre-concentration and analysis of volatile nitrosamines in meat-derived products was developed and compared with conventional methods (Distillation and two-step solid-phase extraction...A new methodology for extraction, pre-concentration and analysis of volatile nitrosamines in meat-derived products was developed and compared with conventional methods (Distillation and two-step solid-phase extraction). The samples (canned sausages, cured meat, luncheon and smoked meat) were treated with an aqueous sodium hydroxide (NaOH) by autoclaving at 121°C for 10 min and extracted by liquid-liquid extraction with dichloromethane, then the nitrosamines were pre-concentrated using activated silica. Then, gas chromatography coupled with flame ionization detector was used for the separation and determination of the different nitrosamines contained in a real sample and gas chromatography with mass spectrometry detection was used as the confirmation technique. The newly invented autoclaving method allowed the determination of nitrosamine compounds at trace levels with limit of detection ranged from 0.077 to 0.18 ppb and quantitation limits were from 0.26 to 0.6 ppb for all nitrosamines, and found to be superior to the conventional ones, yielding approximately about 10%-20% increasing in the recovery compared with the mean recovery obtained when applying conventional methods.展开更多
The aim of the present study was to evaluate the effect of feeding four levels of tuna oil on performance and fatty acid (FA) profiles of broiler chicken meat. 240 Ross broiler chickens were randomly assigned to 20 pe...The aim of the present study was to evaluate the effect of feeding four levels of tuna oil on performance and fatty acid (FA) profiles of broiler chicken meat. 240 Ross broiler chickens were randomly assigned to 20 pens and divided into four treatments: 0%, 0.75%, 1%, and 1.25% of tuna oil. At 49 days, breast and legs-thighs muscles were processed for FA analysis. Concentrations of FA in legs and thighs meat were significantly higher when compared with breast meat. In both types of meats (breast and legs-thighs), the inclusion of 1.0% or 1.25% of tuna oil in the diet significantly increased (P < 0.05) the concentration of n-3 FA (especially docosahexaenoic and eicosapentaenoic acids). Fat in broiler breast contained a proportion of 29% saturated FA (SFA): 36% monosaturated FA (MFA): 35% polyunsaturated FA (PUFA);while legs and thighs meat had a proportion of 28% SFA: 38% MFA: 33% PUFA. The addition of tuna oil in the broiler diet significantly reduced the deposition of SFA, MFA, and PUFA in breast meat, while in legs and thighs these reductions were less noticeable. The significant reduction in the concentration of n-6 PUFA and the increment of n-3 PUFA were more evident in breast than in legs and thighs, and with the addition of 1% and 1.25% of tuna oil. The results of the present study suggest a difference in FA deposition attributable to supplementation with tuna oil. The addition of tuna oil could be recommendable to increase n-3 PUFA in both broiler chicken breast and legs-thighs meats, providing a healthier and functional chicken meat to consumer.展开更多
文摘建立了一步式QuEChERS自动提取和净化技术结合气相色谱-串联质谱同时测定风干牦牛肉中15种N-亚硝胺的分析方法。样品水化后,经乙腈提取,加入4.0 g MgSO_(4)和1.0 g NaCl除水,经十八烷基硅烷(C_(18))和N-丙基乙二胺(PSA)填料净化,采用DB-HeavyWAX色谱柱(30 m×0.25 mm×0.25μm)分离15种N-亚硝胺,在多重反应监测(MRM)模式下进行测定,外标法定量。结果表明,15种N-亚硝胺分离性能良好,在0.1~200μg/L范围内线性关系良好,相关系数(r^(2))≥0.999 0;检出限(LOD)为0.05~0.20μg/kg,定量限(LOQ)为0.10~0.50μg/kg;在1倍、2倍和10倍LOQ 3个添加水平下的平均回收率分别为79.4%~102.1%、80.6%~109.5%、83.0%~110.6%,相对标准偏差(RSD)为0.8%~16.0%。应用建立的方法检测2种不同加工工艺的市售样品,其中7种N-亚硝胺类化合物(N-亚硝基二甲胺、N-亚硝基二异丁胺、N-亚硝基二正丁胺、N-亚硝基甲基苯胺、N-亚硝基乙基苯胺、N-亚硝基吡咯烷、N-亚硝基二苯胺)均有不同程度检出,平均含量为0.08~20.18μg/kg,且熟制风干牦牛肉中N-亚硝胺的检出率和平均含量均高于传统生制风干牦牛肉。该方法实现了前处理的自动化,相较于其他传统方法,操作简单,实验效率高,人为影响因素小,检测灵敏度高,适用于风干牦牛肉中15种N-亚硝胺的快速测定,为研究肉制品中N-亚硝胺的测定提供了方法支持。
文摘A new methodology for extraction, pre-concentration and analysis of volatile nitrosamines in meat-derived products was developed and compared with conventional methods (Distillation and two-step solid-phase extraction). The samples (canned sausages, cured meat, luncheon and smoked meat) were treated with an aqueous sodium hydroxide (NaOH) by autoclaving at 121°C for 10 min and extracted by liquid-liquid extraction with dichloromethane, then the nitrosamines were pre-concentrated using activated silica. Then, gas chromatography coupled with flame ionization detector was used for the separation and determination of the different nitrosamines contained in a real sample and gas chromatography with mass spectrometry detection was used as the confirmation technique. The newly invented autoclaving method allowed the determination of nitrosamine compounds at trace levels with limit of detection ranged from 0.077 to 0.18 ppb and quantitation limits were from 0.26 to 0.6 ppb for all nitrosamines, and found to be superior to the conventional ones, yielding approximately about 10%-20% increasing in the recovery compared with the mean recovery obtained when applying conventional methods.
文摘The aim of the present study was to evaluate the effect of feeding four levels of tuna oil on performance and fatty acid (FA) profiles of broiler chicken meat. 240 Ross broiler chickens were randomly assigned to 20 pens and divided into four treatments: 0%, 0.75%, 1%, and 1.25% of tuna oil. At 49 days, breast and legs-thighs muscles were processed for FA analysis. Concentrations of FA in legs and thighs meat were significantly higher when compared with breast meat. In both types of meats (breast and legs-thighs), the inclusion of 1.0% or 1.25% of tuna oil in the diet significantly increased (P < 0.05) the concentration of n-3 FA (especially docosahexaenoic and eicosapentaenoic acids). Fat in broiler breast contained a proportion of 29% saturated FA (SFA): 36% monosaturated FA (MFA): 35% polyunsaturated FA (PUFA);while legs and thighs meat had a proportion of 28% SFA: 38% MFA: 33% PUFA. The addition of tuna oil in the broiler diet significantly reduced the deposition of SFA, MFA, and PUFA in breast meat, while in legs and thighs these reductions were less noticeable. The significant reduction in the concentration of n-6 PUFA and the increment of n-3 PUFA were more evident in breast than in legs and thighs, and with the addition of 1% and 1.25% of tuna oil. The results of the present study suggest a difference in FA deposition attributable to supplementation with tuna oil. The addition of tuna oil could be recommendable to increase n-3 PUFA in both broiler chicken breast and legs-thighs meats, providing a healthier and functional chicken meat to consumer.