CF3I gas mixtures have attracted considerable attention as potential environmentally-friendly alternatives to SF6 gas,owing to their excellent insulating performance.This paper attempts to study the CF3I ternary gas m...CF3I gas mixtures have attracted considerable attention as potential environmentally-friendly alternatives to SF6 gas,owing to their excellent insulating performance.This paper attempts to study the CF3I ternary gas mixtures with c-C4F8 and buffer gases N2 and CO2 by considering dielectric strength from electron transport parameters based on the Boltzmann method and synergistic effect analysis,compared with SF6 gas mixtures.The results confirm that the critical electric field strength of CF3I/c-C4F8/70%CO2 is greater than that of 30%SF6/70%CO2 when the CF3I content is greater than 17%.Moreover,a higher content of c-C4F8 decreases the sensitivity of gas mixtures to an electric field,and this phenomenon is more obvious in CF3I/c-C4F8/CO2 gas mixtures.The synergistic effects for CF3I/c-C4F8/70%N2 were most obvious when the c-C4F8 content was approximately 20%,and for CF3I/c-C4F8/70%CO2 when the c-C4F8 content was approximately 10%.On the basis of this research,CF3I/c-C4F8/70%N2 shows better insulation performance when the c-C4F8 content is in the15%–20%range.For CF3I/c-C4F8/70%CO2,when the c-C4F8 content is in the 10%–15%range,the gas mixtures have excellent performance.Hence,these gas systems might be used as alternative gas mixtures to SF6 in high-voltage equipment.展开更多
Chemical modification/ambient drying method and freeze drying method were introduced to research the synthesis of mesoporous silica aerogels. By analyzing N2 gas adsorption/desorption isotherms, the fractal geometric ...Chemical modification/ambient drying method and freeze drying method were introduced to research the synthesis of mesoporous silica aerogels. By analyzing N2 gas adsorption/desorption isotherms, the fractal geometric characteristics of gels were focused. The overall surface fractal dimensions were determined by analyzing N2 gas adsorption branch and a Frenkel-Halsey-Hill (FHH) equation was empolyed to determine surface fractal dimension Df It is found that, during ambient drying process, VTMCS/VWetgel ratio plays a crucial role in the changes of geometric feature, the key point is 50%, when the ratio is lower, and surface roughness increases with the ratio, when it exceeds 50%, the surface is almost unaffected by the modification. While freeze drying always tends to get larger Df freeze drying process could cause a rough surface of the gels. Compared with traditional porosity and specific surface area analyses, fractal geometry may be expected to be favorable for mesoporous structural analyses of materials.展开更多
The effect of drying techniques on the microstructure,morphology and pore structure of porous silica gels was studied in the paper.The gels were prepared by using sol-gel process and different drying routes:freeze-dry...The effect of drying techniques on the microstructure,morphology and pore structure of porous silica gels was studied in the paper.The gels were prepared by using sol-gel process and different drying routes:freeze-drying (FD),low pressure drying (LPD),high temperature drying (HTD) and chemical modification & ambient drying (CMD) techniques.Observation under pore distribution and structural properties showed that CMD technique leads to homogenous mesoporous silica material with specific surface area of 745 m2/g,and the average pore size around 20 nm,while LPD and HTD result in loosely packed particles with non-isotropic aggregation pattern.The specific surface areas of LPD and HTD samples are 419 and 513 m2/g respectively,and the pore size distribution of the samples are observed distributing widely in range of 10-100 nm.Freeze drying method is a new but prospective way to prepare mesoporous silica.The specific area of FD sample is around 500 m2/g.By the comparison for the properties of the gels,this paper wants to induce a further interest in finding a proper method to synthesize the porous silica gels for low price use.展开更多
Direct N2O decomposition has been investigated over bare NiO and a series of its alkali-promoted catalysts. These catalysts were characterized by X-ray diffractometry, X-ray photoelectron spectroscopy (XPS) and fiel...Direct N2O decomposition has been investigated over bare NiO and a series of its alkali-promoted catalysts. These catalysts were characterized by X-ray diffractometry, X-ray photoelectron spectroscopy (XPS) and field emission scanning electron microscopy. XPS analysis revealed that surface nickel is present in three forms: metal particles, NiO and Ni(OH)2. It is suggested that nickel(0) valent atoms are essential for the interaction with N2O molecules at the catalyst surfaces. Bare NiO exhibited a very low N2O decomposition reactivity. However, the alkali-containing catalysts exhibited a marked activity enhancement.展开更多
High-purity N2 was used to increase the mobile phase flow rate during ion purification of ion-exchange resin. This was performed to improve the efficiency of isotope separation and puri- fication, and to meet the effi...High-purity N2 was used to increase the mobile phase flow rate during ion purification of ion-exchange resin. This was performed to improve the efficiency of isotope separation and puri- fication, and to meet the efficiency requirements of rapid multiple-collector-inductively coupled plasma mass spectrometry (MC-ICPMS) analysis. For Cu isotope separation, our results indicated that at a gas flow rate 〉60 mL/min, the separation chromatographic peaks broadened and the re-covery rate decreased to 〈99.2%. On the other hand, no significant change in the Cu peaks was ob- served at a gas flow rate of 20 mL/min and the recovery rate was determined to be 〉99.9%. The Cu isotope ratio, measured by the standard-sample bracketing method, agreed with reference data within a±2 SD error range. The separation time was reduced from the traditional 10 h (without N2) to 4 h (with N2), indicating that the efficiency was more than doubled. Moreover, Sr and Nd isotope separation in AGV-2 (US Geological Survey andesite standard sample) accelerated with a 20 mL/min gas flow, demonstrating that with the passage of N2, the purified liquid comprised Rb/Sr and Sm/Nd ratios of 〈0.000 049 and 〈0.000 001 5, respectively. This indicated an effective separation of Rb from Sr and Sm from Nd. MC-ICPMS could therefore be applied to accurately determine Sr and Nd isotope ratios. The results afforded were consistent with the reference data within a±2 SD error range and the total separation time was shortened from 2 d to 〈10 h.展开更多
Understanding the effects of warming on greenhouse gas(GHG, such as N2O, CH4 and CO2 )feedbacks to climate change represents the major environmental issue. However, little information is available on how warming eff...Understanding the effects of warming on greenhouse gas(GHG, such as N2O, CH4 and CO2 )feedbacks to climate change represents the major environmental issue. However, little information is available on how warming effects on GHG fluxes in farmland of North China Plain(NCP). An infrared warming simulation experiment was used to assess the responses of N2O, CH4 and CO2 to warming in wheat season of 2012–2014 from conventional tillage(CT) and no-tillage(NT) systems. The results showed that warming increased cumulative N2O emission by 7.7% in CT but decreased it by 9.7% in NT fields(p 〈 0.05). Cumulative CH4 uptake and CO2 emission were increased by 28.7%–51.7% and 6.3%–15.9% in both two tillage systems,respectively(p 〈 0.05). The stepwise regressions relationship between GHG fluxes and soil temperature and soil moisture indicated that the supply soil moisture due to irrigation and precipitation would enhance the positive warming effects on GHG fluxes in two wheat seasons.However, in 2013, the long-term drought stress due to infrared warming and less precipitation decreased N2O and CO2 emission in warmed treatments. In contrast, warming during this time increased CH4 emission from deep soil depth. Across two years wheat seasons, warming significantly decreased by 30.3% and 63.9% sustained-flux global warming potential(SGWP) of N2O and CH4 expressed as CO2 equivalent in CT and NT fields, respectively. However, increase in soil CO2 emission indicated that future warming projection might provide positive feedback between soil C release and global warming in NCP.展开更多
The emission of N2 is important to remove excess N from lakes, ponds, and wetlands. To investigate the gas emission from water, Gao et al.(2013) developed a new method using a bubble trap device to collect gas sampl...The emission of N2 is important to remove excess N from lakes, ponds, and wetlands. To investigate the gas emission from water, Gao et al.(2013) developed a new method using a bubble trap device to collect gas samples from waters. However, the determination accuracy of sampling volume and gas component concentration was still debatable. In this study, the method was optimized for in situ sampling, accurate volume measurement and direct injection to a gas chromatograph for the analysis of N2 and other gases. By the optimized new method, the recovery rate for N2 was 100.28% on average; the mean coefficient of determination(R2) was 0.9997; the limit of detection was 0.02%. We further assessed the effects of the new method, bottle full of water, vs. vacuum bag and vacuum vial methods, on variations of N2 concentration as influenced by sample storage times of 1,2, 3, 5, and 7 days at constant temperature of 15°C, using indices of averaged relative peak area(%) in comparison with the averaged relative peak area of each method at 0 day.The indices of the bottle full of water method were the lowest(99.5%–108.5%) compared to the indices of vacuum bag and vacuum vial methods(119%–217%). Meanwhile, the gas chromatograph determination of other gas components(O2, CH4, and N2O) was also accurate. The new method was an alternative way to investigate N2 released from various kinds of aquatic ecosystems.展开更多
基金supported by National Natural Science Foundation of China(No.51337006)。
文摘CF3I gas mixtures have attracted considerable attention as potential environmentally-friendly alternatives to SF6 gas,owing to their excellent insulating performance.This paper attempts to study the CF3I ternary gas mixtures with c-C4F8 and buffer gases N2 and CO2 by considering dielectric strength from electron transport parameters based on the Boltzmann method and synergistic effect analysis,compared with SF6 gas mixtures.The results confirm that the critical electric field strength of CF3I/c-C4F8/70%CO2 is greater than that of 30%SF6/70%CO2 when the CF3I content is greater than 17%.Moreover,a higher content of c-C4F8 decreases the sensitivity of gas mixtures to an electric field,and this phenomenon is more obvious in CF3I/c-C4F8/CO2 gas mixtures.The synergistic effects for CF3I/c-C4F8/70%N2 were most obvious when the c-C4F8 content was approximately 20%,and for CF3I/c-C4F8/70%CO2 when the c-C4F8 content was approximately 10%.On the basis of this research,CF3I/c-C4F8/70%N2 shows better insulation performance when the c-C4F8 content is in the15%–20%range.For CF3I/c-C4F8/70%CO2,when the c-C4F8 content is in the 10%–15%range,the gas mixtures have excellent performance.Hence,these gas systems might be used as alternative gas mixtures to SF6 in high-voltage equipment.
基金Funded by the National Mega-Project of Scientific&Technical Supporting Programs,Ministry of Science&Technology of China(No.2006BAJ04A04)Science Foundation of Liaoning Province,China(No.2008S190)
文摘Chemical modification/ambient drying method and freeze drying method were introduced to research the synthesis of mesoporous silica aerogels. By analyzing N2 gas adsorption/desorption isotherms, the fractal geometric characteristics of gels were focused. The overall surface fractal dimensions were determined by analyzing N2 gas adsorption branch and a Frenkel-Halsey-Hill (FHH) equation was empolyed to determine surface fractal dimension Df It is found that, during ambient drying process, VTMCS/VWetgel ratio plays a crucial role in the changes of geometric feature, the key point is 50%, when the ratio is lower, and surface roughness increases with the ratio, when it exceeds 50%, the surface is almost unaffected by the modification. While freeze drying always tends to get larger Df freeze drying process could cause a rough surface of the gels. Compared with traditional porosity and specific surface area analyses, fractal geometry may be expected to be favorable for mesoporous structural analyses of materials.
基金Sponsored by the National Mega-Project of Scientific & Technical Supporting Programs,Ministry of Science &Technology of China (Grant No.2006BAJ04A04)the Science Foundation of Liaoning Province,China (Grant No. 2008S190)
文摘The effect of drying techniques on the microstructure,morphology and pore structure of porous silica gels was studied in the paper.The gels were prepared by using sol-gel process and different drying routes:freeze-drying (FD),low pressure drying (LPD),high temperature drying (HTD) and chemical modification & ambient drying (CMD) techniques.Observation under pore distribution and structural properties showed that CMD technique leads to homogenous mesoporous silica material with specific surface area of 745 m2/g,and the average pore size around 20 nm,while LPD and HTD result in loosely packed particles with non-isotropic aggregation pattern.The specific surface areas of LPD and HTD samples are 419 and 513 m2/g respectively,and the pore size distribution of the samples are observed distributing widely in range of 10-100 nm.Freeze drying method is a new but prospective way to prepare mesoporous silica.The specific area of FD sample is around 500 m2/g.By the comparison for the properties of the gels,this paper wants to induce a further interest in finding a proper method to synthesize the porous silica gels for low price use.
文摘Direct N2O decomposition has been investigated over bare NiO and a series of its alkali-promoted catalysts. These catalysts were characterized by X-ray diffractometry, X-ray photoelectron spectroscopy (XPS) and field emission scanning electron microscopy. XPS analysis revealed that surface nickel is present in three forms: metal particles, NiO and Ni(OH)2. It is suggested that nickel(0) valent atoms are essential for the interaction with N2O molecules at the catalyst surfaces. Bare NiO exhibited a very low N2O decomposition reactivity. However, the alkali-containing catalysts exhibited a marked activity enhancement.
基金co-supported by the National Natural Science Foundation of China (Nos. 41427804, 41421002, 41373004)Program for Changjiang Scholars and Innovative Research Team in University of China (No. IRT1281)the MOST Research Foundation from the State Key Laboratory of Continental Dynamics
文摘High-purity N2 was used to increase the mobile phase flow rate during ion purification of ion-exchange resin. This was performed to improve the efficiency of isotope separation and puri- fication, and to meet the efficiency requirements of rapid multiple-collector-inductively coupled plasma mass spectrometry (MC-ICPMS) analysis. For Cu isotope separation, our results indicated that at a gas flow rate 〉60 mL/min, the separation chromatographic peaks broadened and the re-covery rate decreased to 〈99.2%. On the other hand, no significant change in the Cu peaks was ob- served at a gas flow rate of 20 mL/min and the recovery rate was determined to be 〉99.9%. The Cu isotope ratio, measured by the standard-sample bracketing method, agreed with reference data within a±2 SD error range. The separation time was reduced from the traditional 10 h (without N2) to 4 h (with N2), indicating that the efficiency was more than doubled. Moreover, Sr and Nd isotope separation in AGV-2 (US Geological Survey andesite standard sample) accelerated with a 20 mL/min gas flow, demonstrating that with the passage of N2, the purified liquid comprised Rb/Sr and Sm/Nd ratios of 〈0.000 049 and 〈0.000 001 5, respectively. This indicated an effective separation of Rb from Sr and Sm from Nd. MC-ICPMS could therefore be applied to accurately determine Sr and Nd isotope ratios. The results afforded were consistent with the reference data within a±2 SD error range and the total separation time was shortened from 2 d to 〈10 h.
基金supported by the National Natural Science Foundation of China(No.31170414)the 100 Talents Program of Chinese Academy of Science(No.2009)
文摘Understanding the effects of warming on greenhouse gas(GHG, such as N2O, CH4 and CO2 )feedbacks to climate change represents the major environmental issue. However, little information is available on how warming effects on GHG fluxes in farmland of North China Plain(NCP). An infrared warming simulation experiment was used to assess the responses of N2O, CH4 and CO2 to warming in wheat season of 2012–2014 from conventional tillage(CT) and no-tillage(NT) systems. The results showed that warming increased cumulative N2O emission by 7.7% in CT but decreased it by 9.7% in NT fields(p 〈 0.05). Cumulative CH4 uptake and CO2 emission were increased by 28.7%–51.7% and 6.3%–15.9% in both two tillage systems,respectively(p 〈 0.05). The stepwise regressions relationship between GHG fluxes and soil temperature and soil moisture indicated that the supply soil moisture due to irrigation and precipitation would enhance the positive warming effects on GHG fluxes in two wheat seasons.However, in 2013, the long-term drought stress due to infrared warming and less precipitation decreased N2O and CO2 emission in warmed treatments. In contrast, warming during this time increased CH4 emission from deep soil depth. Across two years wheat seasons, warming significantly decreased by 30.3% and 63.9% sustained-flux global warming potential(SGWP) of N2O and CH4 expressed as CO2 equivalent in CT and NT fields, respectively. However, increase in soil CO2 emission indicated that future warming projection might provide positive feedback between soil C release and global warming in NCP.
基金supported by the National Natural Science Foundation of China (No.41301575)Special Preliminary Study Program of the National Basic Research Program (973) of China (No. 2012CB426503)
文摘The emission of N2 is important to remove excess N from lakes, ponds, and wetlands. To investigate the gas emission from water, Gao et al.(2013) developed a new method using a bubble trap device to collect gas samples from waters. However, the determination accuracy of sampling volume and gas component concentration was still debatable. In this study, the method was optimized for in situ sampling, accurate volume measurement and direct injection to a gas chromatograph for the analysis of N2 and other gases. By the optimized new method, the recovery rate for N2 was 100.28% on average; the mean coefficient of determination(R2) was 0.9997; the limit of detection was 0.02%. We further assessed the effects of the new method, bottle full of water, vs. vacuum bag and vacuum vial methods, on variations of N2 concentration as influenced by sample storage times of 1,2, 3, 5, and 7 days at constant temperature of 15°C, using indices of averaged relative peak area(%) in comparison with the averaged relative peak area of each method at 0 day.The indices of the bottle full of water method were the lowest(99.5%–108.5%) compared to the indices of vacuum bag and vacuum vial methods(119%–217%). Meanwhile, the gas chromatograph determination of other gas components(O2, CH4, and N2O) was also accurate. The new method was an alternative way to investigate N2 released from various kinds of aquatic ecosystems.