Samples of methane molecules grade diameter channel CHA-type molecular sieves(Chabazite-K, SAPO-34 and SSZ-13) were investigated using the adsorption separation of CH4/N2 mixtures. The isotherms recorded for CH4 and N...Samples of methane molecules grade diameter channel CHA-type molecular sieves(Chabazite-K, SAPO-34 and SSZ-13) were investigated using the adsorption separation of CH4/N2 mixtures. The isotherms recorded for CH4 and N2 follow a typical type-Ι behavior, which were fitted well with the Sips model(R2>0.999) and the selectivity was calculated using IAST theory. The results reveal that Chabazite-K has the highest selectivity(SCH4/N= 5.5).2 SSZ-13 has the largest capacity, which can adsorb up to a maximum of 30.957 cm3·g-1(STP) of CH4, due to it having the largest pore volume and surface area, but the lowest selectivity(SCH4/N2= 2.5). From the breakthrough test, we can conclude that SSZ-13 may be a suitable candidate for the recovery of CH4 from low concentration methane(CH4<20%) based on its larger pore volume and higher CH4 capacity. Chabazite-K is more suited to the separation of high concentration methane(CH4>50%) due to its higher selectivity.展开更多
The activated chemisorption of N<sub>2</sub> on Ni (poly) and La film was performed on a molecular beam—surface scattering apparatus. Experimental results indicate that the initial sticking probability ...The activated chemisorption of N<sub>2</sub> on Ni (poly) and La film was performed on a molecular beam—surface scattering apparatus. Experimental results indicate that the initial sticking probability s<sub>o</sub> increases linearly from 0 to 0.03 as normal component of translational energy of the molecuar beam E<sub>n</sub> increases from 11.00 to 19.91 kcal/mol for N<sub>2</sub>/Ni system and S<sub>0</sub> from 0 to 0. 10 as E<sub>n</sub> from 10. 40 to 19.91 kcal/mol for N<sub>2</sub>/La system. The apparent activation energy △E are 6.16 kcal/mol and 5.30 kcal/mol for N<sub>2</sub>/Ni and N<sub>2</sub>/La systems respectively.展开更多
基金financial support from the National Natural Science Foundation of China (Nos. 51672186, 21676175)
文摘Samples of methane molecules grade diameter channel CHA-type molecular sieves(Chabazite-K, SAPO-34 and SSZ-13) were investigated using the adsorption separation of CH4/N2 mixtures. The isotherms recorded for CH4 and N2 follow a typical type-Ι behavior, which were fitted well with the Sips model(R2>0.999) and the selectivity was calculated using IAST theory. The results reveal that Chabazite-K has the highest selectivity(SCH4/N= 5.5).2 SSZ-13 has the largest capacity, which can adsorb up to a maximum of 30.957 cm3·g-1(STP) of CH4, due to it having the largest pore volume and surface area, but the lowest selectivity(SCH4/N2= 2.5). From the breakthrough test, we can conclude that SSZ-13 may be a suitable candidate for the recovery of CH4 from low concentration methane(CH4<20%) based on its larger pore volume and higher CH4 capacity. Chabazite-K is more suited to the separation of high concentration methane(CH4>50%) due to its higher selectivity.
基金Project supportec by the National Natural Science Foundation of China
文摘The activated chemisorption of N<sub>2</sub> on Ni (poly) and La film was performed on a molecular beam—surface scattering apparatus. Experimental results indicate that the initial sticking probability s<sub>o</sub> increases linearly from 0 to 0.03 as normal component of translational energy of the molecuar beam E<sub>n</sub> increases from 11.00 to 19.91 kcal/mol for N<sub>2</sub>/Ni system and S<sub>0</sub> from 0 to 0. 10 as E<sub>n</sub> from 10. 40 to 19.91 kcal/mol for N<sub>2</sub>/La system. The apparent activation energy △E are 6.16 kcal/mol and 5.30 kcal/mol for N<sub>2</sub>/Ni and N<sub>2</sub>/La systems respectively.
基金The project was supported by the National Natural Science Foundation of China(21173153)National High-Tech Research and Development Program of China(863)(2013AA065304)Major Research Program of Sichuan Province Science and Technology Department,China(2011GZ0035,2012FZ0008)~~