期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于ICA和极限学习机的模拟阅读脑电特征分类 被引量:3
1
作者 官金安 杨建华 赵瑞娟 《中南民族大学学报(自然科学版)》 CAS 2018年第1期85-89,共5页
为了有效地提取N2-P3成分,利用ICA对脑电数据进行盲源分离,自动提取N2-P3成分;同时为了克服传统方法如支持向量机、神经网络训练时间长、个别识别准确率不够高的缺点,选择极限学习机作为分类器.在模拟阅读实验范式下,记录了7名受试者的... 为了有效地提取N2-P3成分,利用ICA对脑电数据进行盲源分离,自动提取N2-P3成分;同时为了克服传统方法如支持向量机、神经网络训练时间长、个别识别准确率不够高的缺点,选择极限学习机作为分类器.在模拟阅读实验范式下,记录了7名受试者的脑电数据,利用ICA分别对每名受试者的高维脑电数据进行盲源分离,提取出N2-P3成分,以此作为靶特征,并与非靶特征一起放入极限学习机分类器进行分类.训练得到7名受试者的训练时间和分类准确率,并与支持向量机进行了比较.结果表明:经过ICA特征提取后,使用极限学习机进行分类,该分类器学习速度快,泛化能力强,训练时间大大减少.在分类准确率上,ICA+ELM的分类准确率较传统的最佳单通道+SVM有较大幅度的提升,从后者平均的82.4%提升到了97.7%. 展开更多
关键词 模拟阅读 n2-p3成分 极限学习机
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部