期刊文献+
共找到20篇文章
< 1 >
每页显示 20 50 100
Nitrification-denitrification Loss and N2O Emission from Urea Applied to Crop-soil Systems in North China Plain 被引量:4
1
作者 DING Hong, CAI Gui-xin, WANG Yue-si and CHEN De-li( Institute of Soil and Fertilizer , Fujian Academy of Agricultural Sciences , Fuzhou 350013 Institute of Soil Science, CAS, Nanjing 210008 +1 位作者 LAPC , Institute of Atmospheric Physics, CAS, Beijing 100029 Institute of Food and Land Resources, Univ Melbourne , PV 3052 , Australia ) 《Agricultural Sciences in China》 CAS CSCD 2002年第2期184-188,共5页
Nitrogen losses are not only important for agriculture but environment as well. Field experiments were set up in summer corn field at Fengqiu Agro-Ecological Experimental Station of CAS in North China Plain. The soil ... Nitrogen losses are not only important for agriculture but environment as well. Field experiments were set up in summer corn field at Fengqiu Agro-Ecological Experimental Station of CAS in North China Plain. The soil was in maize-chao soil. Nitrification-denitrification losses and N2O emission were determined by acetylene-inhibition soil-core incubation method in the soils applied urea. The results showed that urea was fast hydrolyzed and became to nitrate. The soil with non urea released 0.33kg N/ha N2O. However, the soil produced 2.91kg N/ha N2O, about 1.94% of the applied N, when the urea was spread on soil surface. N2O emission reduced to 2.50kg N/ha, about 1.67% of the applied N, when the urea was put in deep soil by digging a hole. The denitrification loss was 1.17kg N/ha in control soil. It increased to 3.00kg N/ ha and 2.09kg N/ha, which were 2.00% and 1.39% of the used N, in the soils received urea on surface and sub-surface respectively. It was suggested that nitrification-denitrification was probably not a main way of fertilizer nitrogen loss in this region. 展开更多
关键词 CORN UREA n2o emission
下载PDF
Effects of Water Regime and Straw Application in Paddy Rice Season on N2O Emission from Following Wheat Growing Season 被引量:2
2
作者 ZOUJian-wen HUANGYao +2 位作者 ZONGLiang-gang JIANGJing-yan ZHENGXun-hua 《Agricultural Sciences in China》 CAS CSCD 2003年第1期68-74,共7页
A split-plot experiment in a rice-winter wheat rotation system was performed to study the effects of water regime and wheat straw application in rice-growing season on N2O emission from following wheat growing season.... A split-plot experiment in a rice-winter wheat rotation system was performed to study the effects of water regime and wheat straw application in rice-growing season on N2O emission from following wheat growing season. Water regime in the rice-growing season was designed as the conventional irrigation (flooding/drainage cycle) and the permanent flooding. Wheat straw was incorporated with three rates of 0, 225 and 450 g m-2 into the paddy soil for each water regime just before rice was transplanted. N2O emission was measured by static chamber-gas chromatograph method. Results from the variance analysis indicated that the permanent flooding in rice-growing season markedly enhanced N2O emission in following wheat growing season (P=0. 003), and that the effect of straw application on N2O emission was distinguished between two water regimes. Under the conventional irrigation, incoporation of wheat straw reduced N2O emission in the following wheat growing season, while there were no significant differences in the emission for the straw application rates of 225 and 450 g m-2. No significant differences in N2O emissions were observed among the three rates of straw application for the permanent flooding regime. In addition, the seasonal variation of N2O emission was regulated by soil temperature and moisture. The daily N2O flux (Y, mg m-2 d-1) can be quantitatively described by soil temperature (T, ℃) and moisture (W, WFPS %) asY=A0+A1T+A2W+A3W2(n=23, R2 ≥0. 4159** )or y=C0+C1W+C2W2(n=23,R2≥0. 4074** ). Compared with the effect of soil temperature on N2O emission, soil moisture was an important factor regulating the seasonal pattern of N2O emission. 展开更多
关键词 WINTER-WHEAT n2o emission fluxes Water regime Straw application
下载PDF
Gross nitrogen transformations and N2O emission sources in sandy loam and silt loam soils
3
作者 LANG Man LI Ping WEI Wei 《Journal of Arid Land》 SCIE CSCD 2021年第5期487-499,共13页
The soil type is a key factor influencing N(nitrogen)cycling in soil;however,gross N transformations and N_(2)O emission sources are still poorly understood.In this study,a laboratory 15N tracing experiment was carrie... The soil type is a key factor influencing N(nitrogen)cycling in soil;however,gross N transformations and N_(2)O emission sources are still poorly understood.In this study,a laboratory 15N tracing experiment was carried out at 60%WHC(water holding capacity)and 25℃to evaluate the gross N transformation rates and N_(2)O emission pathways in sandy loam and silt loam soils in a semi-arid region of Heilongjiang Province,China.The results showed that the gross rates of N mineralization,immobilization,and nitrification were 3.60,1.90,and 5.63 mg N/(kg·d)in silt loam soil,respectively,which were 3.62,4.26,and 3.13 times those in sandy loam soil,respectively.The ratios of the gross nitrification rate to the ammonium immobilization rate(n/ia)in sandy loam soil and silt loam soil were all higher than 1.00,whereas the n/ia in sandy loam soil(4.36)was significantly higher than that in silt loam soil(3.08).This result indicated that the ability of sandy loam soil to release and conserve the available N was relatively poor in comparison with silt loam soil,and the relatively strong nitrification rate compared to the immobilization rate may lead to N loss through NO_(3)–leaching.Under aerobic conditions,both nitrification and denitrification made contributions to N_(2)O emissions.Nitrification was the dominant pathway leading to N_(2)O production in soils and was responsible for 82.0%of the total emitted N_(2)O in sandy loam soil,which was significantly higher than that in silt loam soil(71.7%).However,the average contribution of denitrification to total N_(2)O production in sandy loam soil was 17.9%,which was significantly lower than that in silt loam soil(28.3%).These results are valuable for developing reasonable fertilization management and proposing effective greenhouse gas mitigation strategies in different soil types in semiarid regions. 展开更多
关键词 gross N transformation rates 15N tracing n2o emission sources sandy loam silt loam semi-arid region
下载PDF
Predictions of NOx/N2O emissions from an ultra-supercritical CFB boiler using a 2-D comprehensive CFD combustion model 被引量:6
4
作者 Jieqiang Ji Leming Cheng +4 位作者 Yangjun Wei Junfeng Wang Xinyu Gao Mengxiang Fang Qinhui Wang 《Particuology》 SCIE EI CAS CSCD 2020年第2期77-87,共11页
NOx and N2O emissions from an ultra-supercritical circulating fluidized bed(CFB)boiler were predicted using a two dimensional(2-D)comprehensive computational fluid dynamics(CFD)combustion model.This model was develope... NOx and N2O emissions from an ultra-supercritical circulating fluidized bed(CFB)boiler were predicted using a two dimensional(2-D)comprehensive computational fluid dynamics(CFD)combustion model.This model was developed from a three dimensional model for a supercritical CFB boiler previously constructed by our group.Based on an analysis of the NOx and N2O conversion processes in a CFB boiler,the primary formation and destruction reactions were introduced into the 2-D model and coupled.The resulting model was validated using data from the Baima 600 MW supercritical CFB boiler,and then applied to a 660 MW ultra-supercritical CFB boiler.The effects of excess air,the secondary air(SA)to(primary air(PA)plus SA)ratio and the SA injection height on NOx and N2O emissions were investigated.The results show that a higher excess air volume increases both NOx and N2O emissions,while increasing the SA/(PA+SA)ratio somewhat reduces both the NOx and N2O concentrations.On the basis of the results of this work,optimal locations for SA injection ports so as to lower NOx and N2O emissions are recommended. 展开更多
关键词 NOx/n2o emissions 2-D comprehensive combustion model Circulating fluidized bed ULTRA-SUPERCRITICAL
原文传递
N2O emission in partial nitritation-anammox process 被引量:5
5
作者 Li Li Yu Ling +4 位作者 Haiyan Wang Zhaosheng Chu Guokai Yan Zewen Li Tong Wu 《Chinese Chemical Letters》 SCIE CAS CSCD 2020年第1期28-38,共11页
Nitrous oxide(N2O)is one of the significant greenhouse gases,and partial nitritation-anammox(PNA)process emits higher N2O than traditional nitrogen removal processes.N2O production in PNA mainly occurs in three differ... Nitrous oxide(N2O)is one of the significant greenhouse gases,and partial nitritation-anammox(PNA)process emits higher N2O than traditional nitrogen removal processes.N2O production in PNA mainly occurs in three different pathways,i.e.,the ammonia oxidizing bacteria(AOB)denitrification,the hydroxylamine(NH2 OH)oxidation and heterotrophic denitrifiers denitrification.N2O emission data vary significantly because of the different operational conditions,bioreactor configurations,monitoring systems and quantitative methods.Under the common operational parameter scopes of PNA,N2O emission via NH2 OH oxidation dominates at relatively low dissolved oxygen(DO),low inorganic carbon(IC),high pH or low N02-concentration,while N2O emission via AOB denitrification dominates at relative higher DO,higher IC.lower pH or higher N2O-concentration.AOB are highly enriched while nitriteoxidizing bacteria(NOB)are rarely found in partial nitritation process,and the order Nitrosomonadales of AOB is the dominant group and N2O producer.Anammox bacteria,AOB and certain amount of heterotrophic denitrifying bacteria are observed in the anammox process,the genus Denitratisoma and the heterotrophic denitrifying bacteria in the deep layer of anammox granules are the dominant N2O generation bacteria.In one-stage PNA reactors,anammox bacteria account for a large fraction of the biomass,AOB account for small portion,and NOB account for even less.The microbial community,diversity and N2O producers in one-stage PNA reactors are similar with those in two-stage PNA reactors.The dominant anammox bacteria,AOB and NOB in PNA are the species Candidatus Brocadia,the genera of Nitrotoga,Nitrospira and Nitrobacter,and the genus Nitrosomonas,respectively.The relations between N2O emission pathways and microbial communities need further study in the future. 展开更多
关键词 n2o emission Greenhouse gas Partial nitritation-anammox n2o production mechanisms Influencing factors Microbial community
原文传递
Managed grassland alters soil N dynamics and N2O emissions in temperate steppe 被引量:2
6
作者 Lijun Xu Xingliang Xu +7 位作者 Xuejuan Tang Xiaoping Xin Liming Ye Guixia Yang Huajun Tang Shijie Lv Dawei Xu Zhao Zhang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2018年第4期20-30,共11页
Reclamation of degraded grasslands as managed grasslands has been increasingly accelerated in recent years in China. Land use change affects soil nitrogen(N) dynamics and nitrous oxide(N2O) emissions. However, it ... Reclamation of degraded grasslands as managed grasslands has been increasingly accelerated in recent years in China. Land use change affects soil nitrogen(N) dynamics and nitrous oxide(N2O) emissions. However, it remains unclear how large-scale grassland reclamation will impact the grassland ecosystem as a whole. Here, we investigated the effects of the conversion from native to managed grasslands on soil N dynamics and N2O emissions by field experiments in Hulunber in northern China. Soil(0-10 cm), nitrate(NO3-),ammonium(NH4+), and microbial N were measured in plots in a temperate steppe(Leymus chinensis grassland) and two managed grasslands(Medicago sativa and Bromus inermis grasslands) in 2011 and 2012. The results showed conversion of L. chinensis grassland to M.sativa or B. inermis grasslands decreased concentrations of NO3--N, but did not change NH4-N . Soil microbial N was slightly decreased by the conversion of L. chinensis grassland to M.sativa, but increased by the conversion to B. inermis. The conversion of L. chinensis grassland to M. sativa(i.e., a legume grass) increased N2O emissions by 26.2%, while the conversion to the B. inermis(i.e., a non-legume grass) reduced N2O emissions by 33.1%. The conversion from native to managed grasslands caused large created variations in soil NO3-+-N and NH4-N concentrations. Net N mineralization rates did not change significantly in growing season or vegetation type, but to net nitrification rate. These results provide evidence on how reclamation may impact the grassland ecosystem in terms of N dynamics and N2O emissions. 展开更多
关键词 Temperate steppe Managed grassland Land use Nitrogen mobility n2o emissions
原文传递
Effects of long-term amendment of organic manure and nitrogen fertilizer on nitrous oxide emission in a sandy loam soil 被引量:10
7
作者 DING Wei-xin MENG Lei +1 位作者 CAI Zu-cong HAN Feng-xiang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2007年第2期185-193,共9页
To understand the effects of long-term amendment of organic manure and N fertilizer on N2O emission in the North China Plain, a laboratory incubation at different temperatures and soil moistures were carried out using... To understand the effects of long-term amendment of organic manure and N fertilizer on N2O emission in the North China Plain, a laboratory incubation at different temperatures and soil moistures were carried out using soils treated with organic manure (OM), half organic manure plus half fertilizer N (HOM), fertilizer NPK (NPK), fertilizer NP (NP), fertilizer NK (NK), fertilizer PK (NK) and control (CK) since 1989. Cumulative N2O emission in OM soil during the 17 d incubation period was slightly higher than in NPK soil under optimum nitrification conditions (25℃ and 60% water-filled pore space, WFPS), but more than twice under the optimum denitrification conditions (35℃ and 90% WFPS). N2O produced by denitrification was 2.1-2.3 times greater than that by nitrification in OM and HOM soils, but only 1.5 times greater in NPK and NP soils. These results implied that the long-term amendment of organic manure could significantly increase the N2O emission via denitrification in OM soil as compared to NPK soil. This is quite different from field measurement between OM soil and NPK soil. Substantial inhibition of the formation of anaerobic environment for denitrification in field might result in no marked difference in N2O emission between OM and NPK soils. This is due in part to more rapid oxygen diffusion in coarse textured soils than consumption by aerobic microbes until WFPS was 75% and to low easily decomposed organic C of organic manure. This finding suggested that addition of organic manure in the tested sandy loam might be a good management option since it seldom caused a burst of N2O emission but sequestered atmospheric C and maintained efficiently applied N in soil. 展开更多
关键词 DENITRIFICATION N fertilizer NITRIFICATION n2o emission organic manure
下载PDF
Assessing soil nitrous oxide emission as affected by phosphorus and nitrogen addition under two moisture levels 被引量:2
8
作者 Bashir Ullah Muhammad Shaaban +2 位作者 HU Rong-gui ZHAO Jin-song LIN Shan 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2016年第12期2865-2872,共8页
Agricultural soils are deficient of phosphorus (P) worldwide. Phosphatic fertilizers are therefore applied to agricultural soils to improve the fertility and to increase the crop yield. However, the effect of phosph... Agricultural soils are deficient of phosphorus (P) worldwide. Phosphatic fertilizers are therefore applied to agricultural soils to improve the fertility and to increase the crop yield. However, the effect of phosphorus application on soil N2O emissions has rarety been studied. Therefore, we conducted a laboratory study to investigate the effects P addition on soil N2O emissions from P deficient alluvial soil under two levels of nitrogen (N) fertilizer and soil moisture. Treatments were arranged as follows: P (0 and 20 mg P kg-1) was applied to soil under two moisture levels of 60 and 90% water filled pore space (WFPS). Each P and moisture treatment was further treated with two levels of N fertilizer (0 and 200 mg N kg-1 as urea). Soil variables including mineral nitrogen (NH4+-N and NO3--N), available P, dissolved organic carbon (DOC), and soil N2O emissions were measured throughout the study period of 50 days. Results showed that addition of P increased N2O emis- sions either under 60% WFPS or 90% WFPS conditions. Higher N2O emissions were observed under 90% WFPS when compared to 60% WFPS. Application of N fertilizer also enhanced N2O emissions and the highest emissions were 141 μg N2O kg-1 h-1 in P+N treatment under 90% WFPS. The results of the present study suggest that P application markedly increases soil N2O emissions under both low and high soil moisture levels, and either with or without N fertilizer application. 展开更多
关键词 PHOSPHORUS n2o emission water filled pore space nitrogen greenhouse gas
下载PDF
Scenario analysis on abating industrial process greenhouse gas emissions from adipic acid production in China 被引量:1
9
作者 Qing Tong Han-Yi Lin +3 位作者 Xu-Ying Qin Run-Sheng Yan Yue-Feng Guo Xin-Yang Wei 《Petroleum Science》 SCIE CAS CSCD 2020年第4期1171-1179,共9页
Adipic acid is an important petrochemical product,and its production process emits a high concentration of greenhouse gas N_2 O.This paper aims to provide quantitative references for relevant authorities to formulate ... Adipic acid is an important petrochemical product,and its production process emits a high concentration of greenhouse gas N_2 O.This paper aims to provide quantitative references for relevant authorities to formulate greenhouse gas control roadmaps.The forecasting method of this paper is consistent with the published national inventory in terms of caliber.Based on the N_2 O abatement technical parameters of adipic acid and the production trend,this paper combines the scenario analysis and provides a measurement of comprehensive N_2 O abatement effect of the entire industry in China.Four future scenarios are assumed.The baseline scenario(BAUS) is a frozen scenario.Three emission abatement scenarios(ANAS,SNAS,and ENAS) are assumed under different strength of abatement driving parameters.The results show that China's adipic acid production process can achieve increasingly significant N_2 O emission abatement effects.Compared to the baseline scenario,by 2030,the N_2 O emission abatements of the three emission abatement scenarios can reach 207-399 kt and the emission abatement ratios can reach 32.5%-62.6%.By 2050,the N_2 O emission abatements for the three emission abatement scenarios can reach 387-540 kt and the emission abatement ratios can reach 71.4%-99.6%. 展开更多
关键词 Scenario analysis Industrial process greenhouse gas emissions Adipic acid n2o emission abatement China
下载PDF
Nitrous Oxide Emissions from Upland Farmland as Affected by Summer Legume Crop Cultivation 被引量:1
10
作者 XIONG Zheng-qin, XING Guang-xi, H Tsuruta, SHI Shu-Han, SHEN Guang-yu, DU Li-juan and QIAN Wei(Laboratory of Material Cycling in Pedosphere , Institute of Soil Science , Chinese Academy of Sciences , Nanjing 210008 , P. R . China National Institute for Agro-Environmental Sciences , Tsukuba 305 , Japan ) 《Agricultural Sciences in China》 CAS CSCD 2002年第9期977-981,共5页
A field study was conducted to investigate the effects of leguminous crop cultivation on nitrous oxide (N2O) emissions from upland agricultural soils. Results demonstrated that N2O emission sequences were that peanut ... A field study was conducted to investigate the effects of leguminous crop cultivation on nitrous oxide (N2O) emissions from upland agricultural soils. Results demonstrated that N2O emission sequences were that peanut crop> soybean>upland rice in terms of N2O-N flux, being 25.9, 21.2 and 18.4μg/m2·h respectively . While in terms of seasonal emission, the sequence was that soybean > peanut crop > upland rice, being 0.77, 0.70 and 0.55 kg/ha respectively. Results also demonstrated that legume crop treatment emitted much more N2O than non-legume upland rice treatment and that N fertilized treatments emitted more than unfertilized treatments, average N2O-N flux being 25.8 and 17.9μg/m2·h respectively. Legume crop cultivation and N fertilizer, therefore, were one of the important sources of N2O emissions from agricultural fields. 展开更多
关键词 n2o emission Upland farmland Legume crops
下载PDF
N_2O emissions from forest and grassland soils in northern China
11
《Journal of Environmental Sciences》 SCIE EI CAS CSCD 1997年第4期35-42,共8页
N2OemisionsfromforestandgraslandsoilsinnorthernChinaLiuYe,MuYujing,YangWenxiangResearchCenterforEcoEnvironme... N2OemisionsfromforestandgraslandsoilsinnorthernChinaLiuYe,MuYujing,YangWenxiangResearchCenterforEcoEnvironmentalSciences,Ch... 展开更多
关键词 n2o emissions from forest and grassland soils in northern China
下载PDF
Effects of cultivation on N_2O emission and seasonal quantitative variations of related microbes in a temperate grassland soil 被引量:1
12
作者 HUANG Bin CHEN Guan xiong 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2001年第3期376-379,共4页
Laboratory and in situ experiments were done to investigate the influences of cultivation on temperate semi arid grassland (for 17 years spring wheat planted once every two years without fertilization) on soil N ... Laboratory and in situ experiments were done to investigate the influences of cultivation on temperate semi arid grassland (for 17 years spring wheat planted once every two years without fertilization) on soil N 2O emission and quantitative variations of related soil microbes. In the laboratory (25℃ and soil moisture 18%), cultivation increased soil transformations of fertilizer nitrogen (100 μg N/g as NaNO 3, urea, or as urea with dicyandiamide 1 μg N/g). The N 2O emissions from the cultivated and uncultivated soils with or without nitrogen additions were relatively low, and mainly originated from the nitrification. The soil N 2O emission due to cultivation decreased somewhat upon no fertilization or NaNO 3 addition, but significantly upon urea addition. The role of dicyandiamide as nitrification inhibitor was only considerable in the cultivated soil, and had small influence on decreasing N 2O emission in the two soils. The influence of cultivation on soil N 2O emission was also reflected by the number variations of microbes related with soil nitrogen transformation in the two soils. Compared to the uncultivated grassland, in situ ammonifiers and denitrifiers in the cultivated grassland quantitatively averagely increased, and aerobic no symbiotic azotobacters were quantitatively similar, leading to the continued decrease of organic matter content and the decrease of N 2O emission from the cultivated grassland soil. 展开更多
关键词 grassland cultivation N 2O emission nitrogen fertilizer microbes
下载PDF
N_2O emissions from a cultivated Andisol after application of nitrogen fertilizers with or without nitrification inhibitor under soil moisture regime
13
作者 FANXiao-hui HaruoTsuruta 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2004年第5期735-737,共3页
The aim of this work was to examine the emission of N 2O from soils following addition of nitrogen fertilizer with a nitrification inhibitor(+inh) or without the nitrification inhibitor(-inh) at different soil water ... The aim of this work was to examine the emission of N 2O from soils following addition of nitrogen fertilizer with a nitrification inhibitor(+inh) or without the nitrification inhibitor(-inh) at different soil water regime. Higher soil moisture contents increased the total N 2O emissions in all treatments with total emissions being 7 times larger for the CK and >20 times larger for the fertilizer treatments at 85% WFPS(soil water filled pore space) than at 40% WFPS. The rates of N 2O emissions at 40% WFPS under all treatments were small. The maximum emission rate at 55% WFPS without the nitrification inhibitor(-inh) occurred later (day 11) than those of 70% WFPS (-inh) samples (day 8). The inhibition period was 4—22 d for 55% WFPS and 1—15 d for 70% WFPS comparing the rates of N 2O emissions treated (+inh) with (-inh). The maximum emission rates at 85% WFPS were higher than those at the other levels of soil water content for all treatments. The samples(+inh) released less N 2O than (-inh) samples at the early stage. Nevertheless, N 2O emissions from (+inh) samples lasted longer than in the (-inh) treatment. Changes in mineral N at 55%, 70% and 85% WFPS followed the same pattern. NH + 4-N concentrations decreased while NO - 3-N concentrations increased from the beginning of incubation. NH + 4-N concentrations from 40% WFPS treatment declined more slowly than those of the other three levels of soil water content. Nitrification was faster in the (-inh) samples with 100% NH + 4-N nitrified after 22 d(50% WFPS) and 15 d(70% and 85% WFPS). N 2O emissions increased with soil water content. Adding N-fertilizer increased emissions of N 2O. The application of the nitrification inhibitor significantly reduced total N 2O emissions from 30.5%(at 85%WFPS) to 43.6%(at 55% WFPS). 展开更多
关键词 N 2O emission nitrification inhibitor soil water content upland soil samples
下载PDF
Nitrogen cycling and environmental impacts in upland agricultural soils in North China: A review 被引量:43
14
作者 JU Xiao-tang ZHANG Chong 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2017年第12期2848-2862,共15页
The upland agricultural soils in North China are distributed north of a line between the Kunlun Mountains, the Qinling Mountains and the Huaihe River. They occur in arid, semi-arid and semi-humid regions and crop prod... The upland agricultural soils in North China are distributed north of a line between the Kunlun Mountains, the Qinling Mountains and the Huaihe River. They occur in arid, semi-arid and semi-humid regions and crop production often depends on rain-fed or irrigation to supplement rainfall. This paper summarizes the characteristics of gross nitrogen(N) transformation, the fate of N fertilizer and soil N as well as the N loss pathway, and makes suggestions for proper N management in the region. The soils of the region are characterized by strong N mineralization and nitrification, and weak immobilization and denitrification ability, which lead to the production and accumulation of nitrate in the soil profile. Large amounts of accumulated nitrate have been observed in the vadose-zone in soils due to excess N fertilization in the past three decades, and this nitrate is subject to occasional leaching which leads to groundwater nitrate contamination. Under farmer's conventional high N fertilization practice in the winter wheat-summer maize rotation system(N application rate was approximately 600 kg ha–1 yr–1), crop N uptake, soil residual N, NH_3 volatilization, NO_3~– leaching, and denitrification loss accounted for around 27, 30, 23, 18 and 2% of the applied fertilizer N, respectively. NH_3 volatilization and NO_3~– leaching were the most important N loss pathways while soil residual N was an important fate of N fertilizer for replenishing soil N depletion from crop production. The upland agricultural soils in North China are a large source of N_2O and total emissions in this region make up a large proportion(approximately 54%) of Chinese cropland N_2O emissions. The “non-coupled strong ammonia oxidation” process is an important mechanism of N_2O production. Slowing down ammonia oxidation after ammonium-N fertilizer or urea application and avoiding transient high soil NH4+ concentrations are key measures for reducing N_2O emissions in this region. Further N management should aim to minimize N losses from crop and livestock production, and increase the recycling of manure and straw back to cropland. We also recommend adoption of the 4 R(Right soure, Right rate, Right time, Right place) fertilization techniques to realize proper N fertilizer management, and improving application methods or modifying fertilizer types to reduce NH_3 volatilization, improving water management to reduce NO_3~– leaching, and controlling the strong ammonia oxidation process to abate N_2O emission. Future research should focus on the study of the trade-off effects among different N loss pathways under different N application methods or fertilizer products. 展开更多
关键词 N transformation NH3 volatilization ammonia oxidation NO3- leaching n2o emission upland agricultural soils
下载PDF
Contributions of biofilm and suspended sludge to nitrogen transformation and nitrous oxide emission in hybrid sequencing batch system 被引量:17
15
作者 Ingwei Wayne Lo Kwang Victor Lo +2 位作者 Don S Mavinic Dean Shiskowski William Ramey 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2010年第7期953-960,共8页
Hybrid system combines the nature of suspended growth and attached growth has been widely applied to wastewater treatment. In this research, the contributions to N transformation and N2O emission by biofilm and suspen... Hybrid system combines the nature of suspended growth and attached growth has been widely applied to wastewater treatment. In this research, the contributions to N transformation and N2O emission by biofilm and suspended sludge in the hybrid sequencing- batch reactor for a simultaneous nitrification, denitrification and phosphorus removal process were investigated. For the hybrid system, nitrification occurred mostly in the suspended sludge, while the biofilm played the major role in denitrification. The interaction of the biofilm and the suspended sludge in the same reactor resulted in a better overall nitrogen removal performance with simultaneous nitrification and denitrification. However, N2O emission was the main end product of nitrogen removal for the hybrid system; while it was N2 for the biofilm. The relative low N2O emissions from the pure biofilm and the pure suspended sludge corresponded to the relatively high nitrate at the end of the aeration period compared with the hybrid system. 展开更多
关键词 n2o emission BIOFILM suspended sludge hybrid system
原文传递
Nitrous oxide emissions from black soils with different pH 被引量:8
16
作者 Lianfeng Wang Huachao Du +1 位作者 Zuoqiang Han Xilin Zhang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2013年第6期1071-1076,共6页
N2O fluxes as a function of incubation time from soil with different available N contents and pH were determined. Cumulative carbon dioxide (CO2) emissions were measured to indicate soil respiration. A 144-hr incuba... N2O fluxes as a function of incubation time from soil with different available N contents and pH were determined. Cumulative carbon dioxide (CO2) emissions were measured to indicate soil respiration. A 144-hr incubation experiment was conducted in a slightly acidic agricultural soil (PHH2o 5.33) after the pH was adjusted to four different values (3.65, 5.00, 6.90 and 8.55). The experiments consisted of a control without added N, and with NH^-N and NO^-N fertilization. The results showed that soil pH contributed significantly to N20 flux from the soils. There were higher N20 emissions in the period 0-12 hr in the four pH treatments, especially those enhanced with N- fertilization. The cumulative NEO-N emission reached a maximum at pH 8.55 and was stimulated by NO3-N fertilization (70.4 μg/kg). The minimum emissions appeared at pH 3.65 and were not stimulated by NO3^--N or NH4^+-N fertilization. Soil respiration increased significantly due to N-fertilization. Soil respiration increased positively with soil pH (R2 = 0.98, P 〈 0.01). The lowest CO2-C emission (30.2 mg/kg) was presented in pH 3.65 soils without N-fertilization. The highest CO2-C emissions appeared in the pH 8.55 soils for NH4^+-N fertilization (199 mg/kg). These findings suggested that N20 emissions and soil respiration were significantly influenced by low pH, which strongly inhibits soil microbial nitrification and denitrification activities. The content of NO3^--N in soil significantly and positively affected the N2O emissions through denitrification. 展开更多
关键词 n2o emission NITRIFICATION DENITRIFICATION PH soil respiration
原文传递
Inhibition effect of magnetic field on nitrous oxide emission from sequencing batch reactor treating domestic wastewater at low temperature 被引量:7
17
作者 Dan Xu Hongmin Ji +3 位作者 Hongqiang Ren Jinju Geng Kan Li Ke Xu 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2020年第1期205-212,共8页
This study aims to investigate the effect of a magnetic field on nitrous oxide(N2O)emission from a sequencing batch reactor treating low-strength domestic wastewater at low temperature(10℃).After running for 124 days... This study aims to investigate the effect of a magnetic field on nitrous oxide(N2O)emission from a sequencing batch reactor treating low-strength domestic wastewater at low temperature(10℃).After running for 124 days in parallel,results indicated that the conversion rate of N2O for a magnetic field-sequencing batch reactor(MF-SBR)decreased by34.3%compared to that of a conventional SBR(C-SBR).Meanwhile,the removal efficiencies for total nitrogen(TN)and ammonia nitrogen(NH4-N)of the MF-SBR were 22.4%and 39.5%higher than those of the C-SBR.High-throughput sequencing revealed that the abundances of AOB(Nitrosomonas),NOB(Nitrospira)and denitrifiers(Zoogloea),which could reduce N2O to N2,were promoted significantly in the MF-SBR.Enzyme activities(Nir)and gene abundances(nos Z nir S and nir K)for denitrification in the MF-SBR were also notably higher compared to C-SBR.Our study shows that application of a magnetic field is a useful approach for inhibiting the generation of N2O and promoting the nitrogen removal efficiency by affecting the microbial characteristics of sludge in an SBR treating domestic wastewater at low temperature. 展开更多
关键词 Magnetic field Low temperature n2o emission Biological nitrogen removal High-throughput 16S rRNA gene SEQUENCING
原文传递
N_2O and NH_3 emissions from a bioreactor landfill operated under limited aerobic degradation conditions 被引量:5
18
作者 Pinjing He Na Yang Huili Gu Hua Zhang Liming Shao 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2011年第6期1011-1019,共9页
The combination of leachate recirculation and aeration to landfill may be an efficient way for in-situ nitrogen removal.However,nitrogenous substances contained in the landfill layer are concomitantly transformed into... The combination of leachate recirculation and aeration to landfill may be an efficient way for in-situ nitrogen removal.However,nitrogenous substances contained in the landfill layer are concomitantly transformed into N2O and NH3,leading to increased emissions into the atmosphere.In the present study,the emissions of N2O and NH3 were measured under conditions of fresh or partially stabilized refuse with or without leachate recirculation or intermittent aeration.The results showed that the largest N2O emission(12.4 mg-N/L of the column) was observed in the aerated column loaded with partially stabilized refuse and recycled with the leachate of low C/N ratio;while less than 0.33 mg-N/L of the column was produced in the other columns.N2O production was positively correlated with the prolonged aerobic time and negatively related with the C/N ratio in the recycled leachate.NH3 volatilization increased with enhanced gas flow and concentration of free ammonia in the leachate,and the highest cumulative volatilization quantity was 1.7 mg-N/L of the column. 展开更多
关键词 municipal solid waste bioreactor landfill AERATION n2o emission NH3 volatilization
原文传递
Effect of calcium silicate on nutrient use of lowland rice and greenhouse gas emission from a paddy soil under alternating wetting and drying
19
作者 Hyun-Hwoi KU Keiichi HAYASHI +1 位作者 Ruth AGBISIT Gina VILLEGAS-PANGGA 《Pedosphere》 SCIE CAS CSCD 2020年第4期535-543,共9页
In intensively irrigated rice cultivation,plant-available silicon(Si)is a crucial nutrient for improving rice productivity.As a source of Si,calcium silicate(CaSiO3)was amended to evaluate the effect of silicate ferti... In intensively irrigated rice cultivation,plant-available silicon(Si)is a crucial nutrient for improving rice productivity.As a source of Si,calcium silicate(CaSiO3)was amended to evaluate the effect of silicate fertilizer on rice production,nitrogen(N)use efficiency,and greenhouse gas(GHG)emission under alternating wetting and drying in a pot experiment using a tropical soil from a paddy field of the International Rice Research Institute(IRRI)in the Philippines.Four levels of CaSiO3 amendment,0,112.7,224.5,and 445.8 kg ha^-1,with the recommended N rate were tested.The results showed that although CaSiO3amendment of 112.7 kg ha^-1resulted in higher rice straw,improved N use efficiency,and reduced N2O emission,there was no difference in grain yield among the four levels of CaSiO3 amendment owing to relatively lower harvest index.Moreover,CaSiO3 amendment showed a reverse trend between CH4 and N2O emissions as it reduced N2O emission while led to significantly increased CH4 emission and global warming potential.Thus,CaSiO3 amendment was a possible alternative to improve N use efficiency and increase rice straw biomass,but it needs to be reviewed in line with grain yield production and GHG emission.It is also imperative to test an optimal method of silicate fertilizer amendment in future research in order to compromise a negative impact in tropical soils. 展开更多
关键词 CH4 emission N use efficiency n2o emission plant-available Si rice straw biomass silicate fertilizer tropical soil
原文传递
Nitrifiers activity and community characteristics under stress conditions in partial nitrification systems treating ammonium-rich wastewater 被引量:8
20
作者 Jia Miao Qidong Yin +3 位作者 Tomoyuki Hori Tomo Aoyagi Hiroshi Habe Guangxue Wu 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2018年第11期1-8,共8页
Long-term exposure of nitrifiers to high concentrations of free ammonia (FA) and free nitrous add (FNA) may affect nitrifiers activity and nitrous oxide (N2O) emission. Two sequencing batch reactors (SBRs) wer... Long-term exposure of nitrifiers to high concentrations of free ammonia (FA) and free nitrous add (FNA) may affect nitrifiers activity and nitrous oxide (N2O) emission. Two sequencing batch reactors (SBRs) were operated at influent ammonium nitrogen (NH4-N) concentrations of 800 mg/L (SBRH) and 33S mg/L (SBRL), respectively. The NH4-N removal rates in SBRH and SBRL were around 2.4 and 1.0 g/L/day with the nitritation efficiencies of 99.3% and 95.7%, respectively. In the simulated SBR cycle, the N20 emission factors were 1.61% in SBRH and 2.30% in SBRL. N2O emission was affected slightly by FA with the emission factor of 0.22%-0.65%, while N2O emission increased with increasing FNA concentrations with the emission factor of 0.22%~3.96%. The dominant ammonia oxidizing bacteria (AOB) were Nitrosomonas spp. in both reactors, and their relative proportions were 38.89% in SBRH and 13.36% in SBRL. Within the AOB genus, a species (i.e., operational taxonomic unit [OTU] 76) that was phylogenetically identical to Nitrosomonas europaea accounted for 99.07% and 82.04% in SBRH and SBRL, respectively. Additionally, OTU 215, which was related to Nitrosomonas stercoris, accounted for 16.77% of the AOB in SBRL. 展开更多
关键词 Ammonium-rich wastewater Free ammonia Free nitrous acid n2o emission Partial nitrification
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部