NOx and N2O emissions from an ultra-supercritical circulating fluidized bed(CFB)boiler were predicted using a two dimensional(2-D)comprehensive computational fluid dynamics(CFD)combustion model.This model was develope...NOx and N2O emissions from an ultra-supercritical circulating fluidized bed(CFB)boiler were predicted using a two dimensional(2-D)comprehensive computational fluid dynamics(CFD)combustion model.This model was developed from a three dimensional model for a supercritical CFB boiler previously constructed by our group.Based on an analysis of the NOx and N2O conversion processes in a CFB boiler,the primary formation and destruction reactions were introduced into the 2-D model and coupled.The resulting model was validated using data from the Baima 600 MW supercritical CFB boiler,and then applied to a 660 MW ultra-supercritical CFB boiler.The effects of excess air,the secondary air(SA)to(primary air(PA)plus SA)ratio and the SA injection height on NOx and N2O emissions were investigated.The results show that a higher excess air volume increases both NOx and N2O emissions,while increasing the SA/(PA+SA)ratio somewhat reduces both the NOx and N2O concentrations.On the basis of the results of this work,optimal locations for SA injection ports so as to lower NOx and N2O emissions are recommended.展开更多
Reclamation of degraded grasslands as managed grasslands has been increasingly accelerated in recent years in China. Land use change affects soil nitrogen(N) dynamics and nitrous oxide(N2O) emissions. However, it ...Reclamation of degraded grasslands as managed grasslands has been increasingly accelerated in recent years in China. Land use change affects soil nitrogen(N) dynamics and nitrous oxide(N2O) emissions. However, it remains unclear how large-scale grassland reclamation will impact the grassland ecosystem as a whole. Here, we investigated the effects of the conversion from native to managed grasslands on soil N dynamics and N2O emissions by field experiments in Hulunber in northern China. Soil(0-10 cm), nitrate(NO3-),ammonium(NH4+), and microbial N were measured in plots in a temperate steppe(Leymus chinensis grassland) and two managed grasslands(Medicago sativa and Bromus inermis grasslands) in 2011 and 2012. The results showed conversion of L. chinensis grassland to M.sativa or B. inermis grasslands decreased concentrations of NO3--N, but did not change NH4-N . Soil microbial N was slightly decreased by the conversion of L. chinensis grassland to M.sativa, but increased by the conversion to B. inermis. The conversion of L. chinensis grassland to M. sativa(i.e., a legume grass) increased N2O emissions by 26.2%, while the conversion to the B. inermis(i.e., a non-legume grass) reduced N2O emissions by 33.1%. The conversion from native to managed grasslands caused large created variations in soil NO3-+-N and NH4-N concentrations. Net N mineralization rates did not change significantly in growing season or vegetation type, but to net nitrification rate. These results provide evidence on how reclamation may impact the grassland ecosystem in terms of N dynamics and N2O emissions.展开更多
A split-plot experiment in a rice-winter wheat rotation system was performed to study the effects of water regime and wheat straw application in rice-growing season on N2O emission from following wheat growing season....A split-plot experiment in a rice-winter wheat rotation system was performed to study the effects of water regime and wheat straw application in rice-growing season on N2O emission from following wheat growing season. Water regime in the rice-growing season was designed as the conventional irrigation (flooding/drainage cycle) and the permanent flooding. Wheat straw was incorporated with three rates of 0, 225 and 450 g m-2 into the paddy soil for each water regime just before rice was transplanted. N2O emission was measured by static chamber-gas chromatograph method. Results from the variance analysis indicated that the permanent flooding in rice-growing season markedly enhanced N2O emission in following wheat growing season (P=0. 003), and that the effect of straw application on N2O emission was distinguished between two water regimes. Under the conventional irrigation, incoporation of wheat straw reduced N2O emission in the following wheat growing season, while there were no significant differences in the emission for the straw application rates of 225 and 450 g m-2. No significant differences in N2O emissions were observed among the three rates of straw application for the permanent flooding regime. In addition, the seasonal variation of N2O emission was regulated by soil temperature and moisture. The daily N2O flux (Y, mg m-2 d-1) can be quantitatively described by soil temperature (T, ℃) and moisture (W, WFPS %) asY=A0+A1T+A2W+A3W2(n=23, R2 ≥0. 4159** )or y=C0+C1W+C2W2(n=23,R2≥0. 4074** ). Compared with the effect of soil temperature on N2O emission, soil moisture was an important factor regulating the seasonal pattern of N2O emission.展开更多
The soil type is a key factor influencing N(nitrogen)cycling in soil;however,gross N transformations and N_(2)O emission sources are still poorly understood.In this study,a laboratory 15N tracing experiment was carrie...The soil type is a key factor influencing N(nitrogen)cycling in soil;however,gross N transformations and N_(2)O emission sources are still poorly understood.In this study,a laboratory 15N tracing experiment was carried out at 60%WHC(water holding capacity)and 25℃to evaluate the gross N transformation rates and N_(2)O emission pathways in sandy loam and silt loam soils in a semi-arid region of Heilongjiang Province,China.The results showed that the gross rates of N mineralization,immobilization,and nitrification were 3.60,1.90,and 5.63 mg N/(kg·d)in silt loam soil,respectively,which were 3.62,4.26,and 3.13 times those in sandy loam soil,respectively.The ratios of the gross nitrification rate to the ammonium immobilization rate(n/ia)in sandy loam soil and silt loam soil were all higher than 1.00,whereas the n/ia in sandy loam soil(4.36)was significantly higher than that in silt loam soil(3.08).This result indicated that the ability of sandy loam soil to release and conserve the available N was relatively poor in comparison with silt loam soil,and the relatively strong nitrification rate compared to the immobilization rate may lead to N loss through NO_(3)–leaching.Under aerobic conditions,both nitrification and denitrification made contributions to N_(2)O emissions.Nitrification was the dominant pathway leading to N_(2)O production in soils and was responsible for 82.0%of the total emitted N_(2)O in sandy loam soil,which was significantly higher than that in silt loam soil(71.7%).However,the average contribution of denitrification to total N_(2)O production in sandy loam soil was 17.9%,which was significantly lower than that in silt loam soil(28.3%).These results are valuable for developing reasonable fertilization management and proposing effective greenhouse gas mitigation strategies in different soil types in semiarid regions.展开更多
This experiment was conducted in Xinxiang, Henan from June 2013 to June 2014. Total four treatments were designed including farmers ’ common practice (F, 250 kg/hm^2), 80% F (LF, 200 kg/hm^2), 80% F+biochar (LF...This experiment was conducted in Xinxiang, Henan from June 2013 to June 2014. Total four treatments were designed including farmers ’ common practice (F, 250 kg/hm^2), 80% F (LF, 200 kg/hm^2), 80% F+biochar (LFC) and no fertilizer (CK) to measure the dynamic emissions of CO2 and N2O from a summer maize-winter wheat field by static chamber-gas chromatography method. The results showed that the soil CO2 emission was 21.8-1 022.7 mg/(m^2·h), and was mainly influenced by soil temperature and moisture content. During the growth of summer maize, the soil CO2 emission was more significantly affected by soil moisture con-tent; and in winter wheat growing season, it was more significantly affected by soil temperature in the top 5 cm. The LF and LFC treatments significantly reduced the soil cumulative CO2 emission, especial y during the growth of winter wheat. Fertiliza-tion and irrigation were the main factors influencing the soil N2O emission. The soil N2O emission during the fertilization period accounted for 73.9%-74.5% and 40.5%-43.6% of the soil cumulative N2O emission during the summer maize-and winter wheat-growing season, respectively. The peak of emission fluxes was determined by fertilization amount, while the occurrence time of emission peak and emission re-duction effect were influenced by irrigation. The LF treatment reduced the soil cu-mulative N2O emission by 15.7%-16.8% and 18.1%-18.5% during the growth period of summer maize and winter wheat, respectively. Reduced nitrogen fertilization is an effective way for reducing N2O emission in intensive high-yielding farmland. Under a suitable nitrogen level (200 kg/hm^2), the application of biochar showed no significant effect on the soil N2O emission in a short term. The N2O emission factors of the L and LF treatments were 0.60% and 0.56%, respectively. ln the intensive high-yield-ing farmland of North China, reducing the nitrogen application amount is an appro-priate measure to mitigate greenhouse gas emissions without crop yield loss.展开更多
The N2O emission rates, photosynthesis, respiration and stomatal conductance of the dominant tree species from broadleaf/Korean pine forest in Changbai Mountain were measured by simulated water stress with the closed ...The N2O emission rates, photosynthesis, respiration and stomatal conductance of the dominant tree species from broadleaf/Korean pine forest in Changbai Mountain were measured by simulated water stress with the closed bag-gas chromatography. A total of five species seedlings were involved in this study, i.e.,Pinus koraiensis Sieb. et Zucc,Fraxinus mandshurica Rupr,Juglans mandshurica Maxim,Tilia amurensis Rupr, andQuercus mongolica Fisch. ex Turcz.. The results showed that the stomatal conductance, net photosynthetic rate and N2O emission of leaves were significantly reduced under the water stress. The stoma in the leaves of trees is the main pathway of N2O emission. N2O emission in the trees mainly occurred during daytime. N2O emission rates were different in various tree specie seedlings at the same water status. In the same tree species, N2O emission rates decreased as the reduction of soil water contents. At different soil water contents (MW, LW) the N2O emission rates ofPinus koraiensis decreased by 34.43% and 100.6% of those in normal water condition, respectively. In broadleaf arbor decreased by 31.93% and 86.35%, respectively. Under different water stresses N2O emission rates in five tree species such asPinus koraiensis, Fraxinus mandshurica, Juglans mandshurica, Tilia amurensis, andQuercus mongolica were 38.22, 14.44, 33.02, 16.48 and 32.33 ngN2O·g?1DW·h?1, respectively. Keywords Trees - N2O emission rate - Soil water stress - broadleaf/Korean pine forest - Changbai Mountain CLC number S718.55 Document code A Foundation item: This project was supported by the National Natural Science Foundation of China (No. 30271068), the grant of the Knowledge Innovation Program of Chinese Academy of Sciences (KZ-CX-SW-01-01B-10), and the Special Funds for Major State Basic Research Program of China (No. G1999043407)Biography: Wang Miao (1964-), male, associate professor in Institute of Applied Ecology, Chinese Academy of Science, Shenyang 110016, P. R. China.Responsible editor: Song Funan展开更多
[Objective] N2Oand NOX(NO, NO2) are important nitrogen oxides gases(NOGs) in paddy fields, and rice plants play important roles in NOG emissions in paddy fields. However, the source of NOG emissions from rice phyl...[Objective] N2Oand NOX(NO, NO2) are important nitrogen oxides gases(NOGs) in paddy fields, and rice plants play important roles in NOG emissions in paddy fields. However, the source of NOG emissions from rice phyllosphere and roots and their relationship to light quality and intensity still remain unclear. In this study, the relationship between light quality, intensity and N2 O, NOX(NO, NO2) emissions from rice phyllosphere and roots at tillering stage was investigated to clarify the contribution of rice plants to N2Oand NOX(NO, NO2) emissions and analyze the mechanism of light control, aiming at providing a scientific basis for revealing how light-control technology affects NOG emissions from rice at tillering stage in paddy fields. [Method] In this study, nitrogen content was controlled by a hydroponic system. A small electric incubator was used for light control. A simultaneous determination was designed to investigate the effect of different weak light qualities(yellow, green, white, red and blue lights) and intensities(dark, 0 lx; very weak, 2 000lx; weak, 4 000 lx; moderate, 6 000 lx; strong, 8 000 lx) on N2Oand NOXemissions from rice phyllosphere and roots at tillering stage in a liquid culture medium system. N2Oconcentration in air samples was determined by gas chromatography within 12 h, and NOX(NO, NO2) concentration was analyzed using 42 i NO- NO2-NOXgas analyzer. [Result] The results showed that:(1) Under a constant nitrogen condition(NH4NO3-N, 90 mg/L) when rice seedlings were treated with moderate(6 000lx) and strong(8 000 lx) light, the average emission rate of N2Oand NO from rice phyllosphere at tillering stage was 27.08, 32.33 μg/(pot·h) and 0.114, 0.057 μg/(pot·h),respectively, accounting for 57.38%, 58.65% and 9.65%, 4.52% of the total release of N2Oand NO from the whole rice plant, respectively. It implicated that rice phyllosphere is an important source of N2Oemission at tillering stage in paddy fields.(2)When rice seedlings were treated with yellow, green, white, red and blue LED lights under a constant light intensity(1 600 lx), the average emission rate of N2Ofrom rice phyllosphere was 6.83, 9.40, 9.73, 2.82 and 4.08 μg/(pot·h), respectively. Compared with green and yellow LED lights, N2Oemission from rice phyllosphere and roots at tillering stage was inhibited markedly by red(3 000 lx) and blue(2 500 lx)LED lights(P0.01). In addition, NO emission from rice phyllosphere was enhanced significantly by white and red LED lights, while NO emissions from rice phyllosphere and roots were inhibited by blue light synchronously. Nevertheless, no evident NO2 emission from rice phyllosphere and roots was detected under the same condition.(3) Within the range of 0-8 000 lx, NO and N2Oemissions from rice roots and N2Oemission from rice phyllosphere increased with the enhancement of light intensity. In contrast, NO emission from rice phyllosphere was inhibited remarkably by moderate(6 000 lx) and strong(8 000 lx) light(P〈 0.01). [Conclusion] Rice seedlings mainly exhibited net emissions of NO2 from the phyllosphere and roots.N2Oand NOX(NO, NO2) emissions from rice phyllosphere and roots at tillering stage could be inhibited by adjusting the composition of visible light(synchronously increasing the proportions of red and blue lights) and appropriately controlling daytime light intensity.展开更多
A field experiment was conducted on Chinese cabbage (Brassica campestris L. ssp. pekinensis (Lour.) Olsson) in a Nanjing suburb in 2003. The experiment included 4 treatments in a randomized complete block design w...A field experiment was conducted on Chinese cabbage (Brassica campestris L. ssp. pekinensis (Lour.) Olsson) in a Nanjing suburb in 2003. The experiment included 4 treatments in a randomized complete block design with 3 replicates: zero chemical fertilizer N (CK); urea at rates of 300 kg N ha^-1 (U300) and 600 kg N ha^-1 (U600), both as basal and two topdressings; and polymer-coated urea at a rate of 180 kg N ha^-1 (PCU180) as a basal application. The acetylene inhibition technique was used to measure denitrification (N2 + N2O) from intact soil cores and N2O emissions in the absence of acetylene. Results showed that compared to (3K total denitrification losses were significantly greater (P ≤ 0.05) in the PCU180, U300, and U600 treatments,while N2O emissions in the U300 and U600 treatments were significantly higher (P ≤ 0.05) than (3K. In the U300 and U600 treatments peaks of denitrification and N2O emission were usually observed after N application. In the polymer-coated urea treatment (PCU180) during the period 20 to 40 days after transplanting, higher denitrification rates and N2O fluxes occurred. Compared with urea, polymer-coated urea did not show any effect on reducing denitrification losses and N2O emissions in terms of percentage of applied N. As temperature gradually decreased from transplanting to harvest, denitrification rates and N2O emissions tended to decrease. A significant (P ≤0.01) positive correlation occurred between denitrification (r = 0.872) or N2O emission (r = 0.781) flux densities and soil temperature in the CK treatment with a stable nitrate content during the whole growing season.展开更多
Field measurements were made from June 2001 to May 2002 to evaluate the effect of crop residue application and temperature on CO2, CH4, and N2O emissions within an entire rice-wheat rotation season. Rapeseed cake and ...Field measurements were made from June 2001 to May 2002 to evaluate the effect of crop residue application and temperature on CO2, CH4, and N2O emissions within an entire rice-wheat rotation season. Rapeseed cake and wheat straw were incorporated into the soil at a rate of 2.25 t hm(-2) when the rice crop was transplanted in June 2001. Compared with the control, the incorporation of rapeseed cake enhanced the emissions of CO2, CH4, and N2O in the rice-growing season by 12.3%, 252.3%, and 17.5%, respectively, while no further effect was held on the emissions of CO2 and N2O in the following wheat-growing season. The incorporation of wheat straw enhanced the emissions of CO2 and CH4 by 7.1% and 249.6%, respectively, but reduced the N2O emission by 18.8% in the rice-growing season. Significant reductions of 17.8% for the CO2 and of 12.9% for the N2O emission were observed in the following wheat-growing season. A positive correlation existed between the emissions of N2O and CO2 (R-2 = 0.445, n = 73,p < 0.001) from the rice-growing season when N2O was emitted. A trade-off relationship between the emissions of CH4 and N2O was found in the rice-growing season. The CH4 emission was significantly correlated with the CO2 emission for the period from rice transplantation to field drainage, but not for the entire rice-growing season. In addition, air temperature was found to regulate the CO2 emissions from the non-waterlogged period over the entire rice-wheat rotation season and the N2O emissions from the nonwaterlogged period of the rice-growing season, which can be quantitatively described by an exponential function. The temperature coefficient (Q(10)) was then evaluated to be 2.3+/-0.2 for the CO2 emission and 3.9+/-0.4 for the N2O emission, respectively.展开更多
Adipic acid is an important petrochemical product,and its production process emits a high concentration of greenhouse gas N_2 O.This paper aims to provide quantitative references for relevant authorities to formulate ...Adipic acid is an important petrochemical product,and its production process emits a high concentration of greenhouse gas N_2 O.This paper aims to provide quantitative references for relevant authorities to formulate greenhouse gas control roadmaps.The forecasting method of this paper is consistent with the published national inventory in terms of caliber.Based on the N_2 O abatement technical parameters of adipic acid and the production trend,this paper combines the scenario analysis and provides a measurement of comprehensive N_2 O abatement effect of the entire industry in China.Four future scenarios are assumed.The baseline scenario(BAUS) is a frozen scenario.Three emission abatement scenarios(ANAS,SNAS,and ENAS) are assumed under different strength of abatement driving parameters.The results show that China's adipic acid production process can achieve increasingly significant N_2 O emission abatement effects.Compared to the baseline scenario,by 2030,the N_2 O emission abatements of the three emission abatement scenarios can reach 207-399 kt and the emission abatement ratios can reach 32.5%-62.6%.By 2050,the N_2 O emission abatements for the three emission abatement scenarios can reach 387-540 kt and the emission abatement ratios can reach 71.4%-99.6%.展开更多
A field study was conducted to investigate the effects of leguminous crop cultivation on nitrous oxide (N2O) emissions from upland agricultural soils. Results demonstrated that N2O emission sequences were that peanut ...A field study was conducted to investigate the effects of leguminous crop cultivation on nitrous oxide (N2O) emissions from upland agricultural soils. Results demonstrated that N2O emission sequences were that peanut crop> soybean>upland rice in terms of N2O-N flux, being 25.9, 21.2 and 18.4μg/m2·h respectively . While in terms of seasonal emission, the sequence was that soybean > peanut crop > upland rice, being 0.77, 0.70 and 0.55 kg/ha respectively. Results also demonstrated that legume crop treatment emitted much more N2O than non-legume upland rice treatment and that N fertilized treatments emitted more than unfertilized treatments, average N2O-N flux being 25.8 and 17.9μg/m2·h respectively. Legume crop cultivation and N fertilizer, therefore, were one of the important sources of N2O emissions from agricultural fields.展开更多
The aim of this work was to examine the emission of N 2O from soils following addition of nitrogen fertilizer with a nitrification inhibitor(+inh) or without the nitrification inhibitor(-inh) at different soil water ...The aim of this work was to examine the emission of N 2O from soils following addition of nitrogen fertilizer with a nitrification inhibitor(+inh) or without the nitrification inhibitor(-inh) at different soil water regime. Higher soil moisture contents increased the total N 2O emissions in all treatments with total emissions being 7 times larger for the CK and >20 times larger for the fertilizer treatments at 85% WFPS(soil water filled pore space) than at 40% WFPS. The rates of N 2O emissions at 40% WFPS under all treatments were small. The maximum emission rate at 55% WFPS without the nitrification inhibitor(-inh) occurred later (day 11) than those of 70% WFPS (-inh) samples (day 8). The inhibition period was 4—22 d for 55% WFPS and 1—15 d for 70% WFPS comparing the rates of N 2O emissions treated (+inh) with (-inh). The maximum emission rates at 85% WFPS were higher than those at the other levels of soil water content for all treatments. The samples(+inh) released less N 2O than (-inh) samples at the early stage. Nevertheless, N 2O emissions from (+inh) samples lasted longer than in the (-inh) treatment. Changes in mineral N at 55%, 70% and 85% WFPS followed the same pattern. NH + 4-N concentrations decreased while NO - 3-N concentrations increased from the beginning of incubation. NH + 4-N concentrations from 40% WFPS treatment declined more slowly than those of the other three levels of soil water content. Nitrification was faster in the (-inh) samples with 100% NH + 4-N nitrified after 22 d(50% WFPS) and 15 d(70% and 85% WFPS). N 2O emissions increased with soil water content. Adding N-fertilizer increased emissions of N 2O. The application of the nitrification inhibitor significantly reduced total N 2O emissions from 30.5%(at 85%WFPS) to 43.6%(at 55% WFPS).展开更多
N2O emission has obvious water effect, but the current research is not deep enough. The soil wetting mode of drip irrigation technology is obviously different from that of conventional irrigation. Using the method of ...N2O emission has obvious water effect, but the current research is not deep enough. The soil wetting mode of drip irrigation technology is obviously different from that of conventional irrigation. Using the method of soil box indoor simulation, the N2O emission under different soil vertical water content was analyzed. Hydrus Software was used to simulate the soil wetting body under different drip irrigation technical parameters, the relationship between the combination of drip irrigation technical parameters and soil vertical water content was studied, and then the relationship between the N2O emission and the combination of drip irrigation technical parameters was proposed. The results showed that soil N2O emission flux increased with the increase of soil moisture, and the maximum emission flux was three times as much as the minimum emission flux. Under the condition of uniform distribution of soil moisture, soil N2O emission flux was smaller than that under non-uniform distribution of soil moisture. Hydrus software simulation results show that drip flow rate is 2.0 L/h, the irrigation period is 5 days, the irrigation quota is 12 mm, and the soil N2O emission flux is the largest. Adjusting the combination of technical parameters of drip irrigation can reduce soil N2O emission flux.展开更多
N2O is one of the important greenhouse gases that cause global warming. N2O emissions from the soil of the facility vegetable land are an important source. It is important to summarize the research on the N2O emission...N2O is one of the important greenhouse gases that cause global warming. N2O emissions from the soil of the facility vegetable land are an important source. It is important to summarize the research on the N2O emissions from the soil in the facility vegetable land, and is also of great significance to study on the emission mechanism of N2O in China’s agricultural fields. This paper summarizes the development status of the facility vegetable plot in China, tracks the progress of soil N2O emission research in the facility vegetable plot, and makes a prospect of the research in this field.展开更多
Recent interests in biochar stem from its agronomic benefits and carbon sequestration potentials in soil applications. As a not fully understood newer concept, adding biochar as a bulking agent to animal manure compos...Recent interests in biochar stem from its agronomic benefits and carbon sequestration potentials in soil applications. As a not fully understood newer concept, adding biochar as a bulking agent to animal manure composting has the potential to enhance the performance of composting process and reduce associated N2O emissions. This short report presents emerging trends and knowledge gaps in this research area, and provides an introduction to understand the mechanism by which biochar impacts manure composting performance and N2O fluxes.展开更多
基金This work was supported by the National Key Research&Devel-opment Program of China(No.2016YFB0600202-2).
文摘NOx and N2O emissions from an ultra-supercritical circulating fluidized bed(CFB)boiler were predicted using a two dimensional(2-D)comprehensive computational fluid dynamics(CFD)combustion model.This model was developed from a three dimensional model for a supercritical CFB boiler previously constructed by our group.Based on an analysis of the NOx and N2O conversion processes in a CFB boiler,the primary formation and destruction reactions were introduced into the 2-D model and coupled.The resulting model was validated using data from the Baima 600 MW supercritical CFB boiler,and then applied to a 660 MW ultra-supercritical CFB boiler.The effects of excess air,the secondary air(SA)to(primary air(PA)plus SA)ratio and the SA injection height on NOx and N2O emissions were investigated.The results show that a higher excess air volume increases both NOx and N2O emissions,while increasing the SA/(PA+SA)ratio somewhat reduces both the NOx and N2O concentrations.On the basis of the results of this work,optimal locations for SA injection ports so as to lower NOx and N2O emissions are recommended.
基金supported by The National Basic Research Program (973) of China (No. 2015CB150800)the National Key Research and Development Program of China (No. 2016YFC0500603)+1 种基金the China Agriculture Research System “China agriculture research system” (No. CARS-35)the National Nonprofit Institute Research Grant of CAAS (No. 647-53)
文摘Reclamation of degraded grasslands as managed grasslands has been increasingly accelerated in recent years in China. Land use change affects soil nitrogen(N) dynamics and nitrous oxide(N2O) emissions. However, it remains unclear how large-scale grassland reclamation will impact the grassland ecosystem as a whole. Here, we investigated the effects of the conversion from native to managed grasslands on soil N dynamics and N2O emissions by field experiments in Hulunber in northern China. Soil(0-10 cm), nitrate(NO3-),ammonium(NH4+), and microbial N were measured in plots in a temperate steppe(Leymus chinensis grassland) and two managed grasslands(Medicago sativa and Bromus inermis grasslands) in 2011 and 2012. The results showed conversion of L. chinensis grassland to M.sativa or B. inermis grasslands decreased concentrations of NO3--N, but did not change NH4-N . Soil microbial N was slightly decreased by the conversion of L. chinensis grassland to M.sativa, but increased by the conversion to B. inermis. The conversion of L. chinensis grassland to M. sativa(i.e., a legume grass) increased N2O emissions by 26.2%, while the conversion to the B. inermis(i.e., a non-legume grass) reduced N2O emissions by 33.1%. The conversion from native to managed grasslands caused large created variations in soil NO3-+-N and NH4-N concentrations. Net N mineralization rates did not change significantly in growing season or vegetation type, but to net nitrification rate. These results provide evidence on how reclamation may impact the grassland ecosystem in terms of N dynamics and N2O emissions.
基金This work was supported by the Hundred Talents Program launched by the Chinese Academy of Sciencesthe National Key Basic Research Development Foundation of China(G1999011805).
文摘A split-plot experiment in a rice-winter wheat rotation system was performed to study the effects of water regime and wheat straw application in rice-growing season on N2O emission from following wheat growing season. Water regime in the rice-growing season was designed as the conventional irrigation (flooding/drainage cycle) and the permanent flooding. Wheat straw was incorporated with three rates of 0, 225 and 450 g m-2 into the paddy soil for each water regime just before rice was transplanted. N2O emission was measured by static chamber-gas chromatograph method. Results from the variance analysis indicated that the permanent flooding in rice-growing season markedly enhanced N2O emission in following wheat growing season (P=0. 003), and that the effect of straw application on N2O emission was distinguished between two water regimes. Under the conventional irrigation, incoporation of wheat straw reduced N2O emission in the following wheat growing season, while there were no significant differences in the emission for the straw application rates of 225 and 450 g m-2. No significant differences in N2O emissions were observed among the three rates of straw application for the permanent flooding regime. In addition, the seasonal variation of N2O emission was regulated by soil temperature and moisture. The daily N2O flux (Y, mg m-2 d-1) can be quantitatively described by soil temperature (T, ℃) and moisture (W, WFPS %) asY=A0+A1T+A2W+A3W2(n=23, R2 ≥0. 4159** )or y=C0+C1W+C2W2(n=23,R2≥0. 4074** ). Compared with the effect of soil temperature on N2O emission, soil moisture was an important factor regulating the seasonal pattern of N2O emission.
基金financed by the National Natural Science Foundation of China(41301345,41101284)。
文摘The soil type is a key factor influencing N(nitrogen)cycling in soil;however,gross N transformations and N_(2)O emission sources are still poorly understood.In this study,a laboratory 15N tracing experiment was carried out at 60%WHC(water holding capacity)and 25℃to evaluate the gross N transformation rates and N_(2)O emission pathways in sandy loam and silt loam soils in a semi-arid region of Heilongjiang Province,China.The results showed that the gross rates of N mineralization,immobilization,and nitrification were 3.60,1.90,and 5.63 mg N/(kg·d)in silt loam soil,respectively,which were 3.62,4.26,and 3.13 times those in sandy loam soil,respectively.The ratios of the gross nitrification rate to the ammonium immobilization rate(n/ia)in sandy loam soil and silt loam soil were all higher than 1.00,whereas the n/ia in sandy loam soil(4.36)was significantly higher than that in silt loam soil(3.08).This result indicated that the ability of sandy loam soil to release and conserve the available N was relatively poor in comparison with silt loam soil,and the relatively strong nitrification rate compared to the immobilization rate may lead to N loss through NO_(3)–leaching.Under aerobic conditions,both nitrification and denitrification made contributions to N_(2)O emissions.Nitrification was the dominant pathway leading to N_(2)O production in soils and was responsible for 82.0%of the total emitted N_(2)O in sandy loam soil,which was significantly higher than that in silt loam soil(71.7%).However,the average contribution of denitrification to total N_(2)O production in sandy loam soil was 17.9%,which was significantly lower than that in silt loam soil(28.3%).These results are valuable for developing reasonable fertilization management and proposing effective greenhouse gas mitigation strategies in different soil types in semiarid regions.
基金Supported by National Key Technology Research and Development Program(2013BAD11B03)National Natural Science Foundation(31272249,31071865,41505100)~~
文摘This experiment was conducted in Xinxiang, Henan from June 2013 to June 2014. Total four treatments were designed including farmers ’ common practice (F, 250 kg/hm^2), 80% F (LF, 200 kg/hm^2), 80% F+biochar (LFC) and no fertilizer (CK) to measure the dynamic emissions of CO2 and N2O from a summer maize-winter wheat field by static chamber-gas chromatography method. The results showed that the soil CO2 emission was 21.8-1 022.7 mg/(m^2·h), and was mainly influenced by soil temperature and moisture content. During the growth of summer maize, the soil CO2 emission was more significantly affected by soil moisture con-tent; and in winter wheat growing season, it was more significantly affected by soil temperature in the top 5 cm. The LF and LFC treatments significantly reduced the soil cumulative CO2 emission, especial y during the growth of winter wheat. Fertiliza-tion and irrigation were the main factors influencing the soil N2O emission. The soil N2O emission during the fertilization period accounted for 73.9%-74.5% and 40.5%-43.6% of the soil cumulative N2O emission during the summer maize-and winter wheat-growing season, respectively. The peak of emission fluxes was determined by fertilization amount, while the occurrence time of emission peak and emission re-duction effect were influenced by irrigation. The LF treatment reduced the soil cu-mulative N2O emission by 15.7%-16.8% and 18.1%-18.5% during the growth period of summer maize and winter wheat, respectively. Reduced nitrogen fertilization is an effective way for reducing N2O emission in intensive high-yielding farmland. Under a suitable nitrogen level (200 kg/hm^2), the application of biochar showed no significant effect on the soil N2O emission in a short term. The N2O emission factors of the L and LF treatments were 0.60% and 0.56%, respectively. ln the intensive high-yield-ing farmland of North China, reducing the nitrogen application amount is an appro-priate measure to mitigate greenhouse gas emissions without crop yield loss.
基金The National Natural Science Foundation of China (No. 30271068) the grant of the Knowledge Inno-vation Program of Chinese Academy of Sciences (KZ-CX-SW-01-01B-10) and the Special Funds for Major State Basic Research Pr
文摘The N2O emission rates, photosynthesis, respiration and stomatal conductance of the dominant tree species from broadleaf/Korean pine forest in Changbai Mountain were measured by simulated water stress with the closed bag-gas chromatography. A total of five species seedlings were involved in this study, i.e.,Pinus koraiensis Sieb. et Zucc,Fraxinus mandshurica Rupr,Juglans mandshurica Maxim,Tilia amurensis Rupr, andQuercus mongolica Fisch. ex Turcz.. The results showed that the stomatal conductance, net photosynthetic rate and N2O emission of leaves were significantly reduced under the water stress. The stoma in the leaves of trees is the main pathway of N2O emission. N2O emission in the trees mainly occurred during daytime. N2O emission rates were different in various tree specie seedlings at the same water status. In the same tree species, N2O emission rates decreased as the reduction of soil water contents. At different soil water contents (MW, LW) the N2O emission rates ofPinus koraiensis decreased by 34.43% and 100.6% of those in normal water condition, respectively. In broadleaf arbor decreased by 31.93% and 86.35%, respectively. Under different water stresses N2O emission rates in five tree species such asPinus koraiensis, Fraxinus mandshurica, Juglans mandshurica, Tilia amurensis, andQuercus mongolica were 38.22, 14.44, 33.02, 16.48 and 32.33 ngN2O·g?1DW·h?1, respectively. Keywords Trees - N2O emission rate - Soil water stress - broadleaf/Korean pine forest - Changbai Mountain CLC number S718.55 Document code A Foundation item: This project was supported by the National Natural Science Foundation of China (No. 30271068), the grant of the Knowledge Innovation Program of Chinese Academy of Sciences (KZ-CX-SW-01-01B-10), and the Special Funds for Major State Basic Research Program of China (No. G1999043407)Biography: Wang Miao (1964-), male, associate professor in Institute of Applied Ecology, Chinese Academy of Science, Shenyang 110016, P. R. China.Responsible editor: Song Funan
基金Supported by National Natural Science Foundation of China(3116041241361056)+1 种基金General Program of Basic Research of Yunnan Province(2011FZ183)Talent Introduction Project of Kunming University(YJL12012)~~
文摘[Objective] N2Oand NOX(NO, NO2) are important nitrogen oxides gases(NOGs) in paddy fields, and rice plants play important roles in NOG emissions in paddy fields. However, the source of NOG emissions from rice phyllosphere and roots and their relationship to light quality and intensity still remain unclear. In this study, the relationship between light quality, intensity and N2 O, NOX(NO, NO2) emissions from rice phyllosphere and roots at tillering stage was investigated to clarify the contribution of rice plants to N2Oand NOX(NO, NO2) emissions and analyze the mechanism of light control, aiming at providing a scientific basis for revealing how light-control technology affects NOG emissions from rice at tillering stage in paddy fields. [Method] In this study, nitrogen content was controlled by a hydroponic system. A small electric incubator was used for light control. A simultaneous determination was designed to investigate the effect of different weak light qualities(yellow, green, white, red and blue lights) and intensities(dark, 0 lx; very weak, 2 000lx; weak, 4 000 lx; moderate, 6 000 lx; strong, 8 000 lx) on N2Oand NOXemissions from rice phyllosphere and roots at tillering stage in a liquid culture medium system. N2Oconcentration in air samples was determined by gas chromatography within 12 h, and NOX(NO, NO2) concentration was analyzed using 42 i NO- NO2-NOXgas analyzer. [Result] The results showed that:(1) Under a constant nitrogen condition(NH4NO3-N, 90 mg/L) when rice seedlings were treated with moderate(6 000lx) and strong(8 000 lx) light, the average emission rate of N2Oand NO from rice phyllosphere at tillering stage was 27.08, 32.33 μg/(pot·h) and 0.114, 0.057 μg/(pot·h),respectively, accounting for 57.38%, 58.65% and 9.65%, 4.52% of the total release of N2Oand NO from the whole rice plant, respectively. It implicated that rice phyllosphere is an important source of N2Oemission at tillering stage in paddy fields.(2)When rice seedlings were treated with yellow, green, white, red and blue LED lights under a constant light intensity(1 600 lx), the average emission rate of N2Ofrom rice phyllosphere was 6.83, 9.40, 9.73, 2.82 and 4.08 μg/(pot·h), respectively. Compared with green and yellow LED lights, N2Oemission from rice phyllosphere and roots at tillering stage was inhibited markedly by red(3 000 lx) and blue(2 500 lx)LED lights(P0.01). In addition, NO emission from rice phyllosphere was enhanced significantly by white and red LED lights, while NO emissions from rice phyllosphere and roots were inhibited by blue light synchronously. Nevertheless, no evident NO2 emission from rice phyllosphere and roots was detected under the same condition.(3) Within the range of 0-8 000 lx, NO and N2Oemissions from rice roots and N2Oemission from rice phyllosphere increased with the enhancement of light intensity. In contrast, NO emission from rice phyllosphere was inhibited remarkably by moderate(6 000 lx) and strong(8 000 lx) light(P〈 0.01). [Conclusion] Rice seedlings mainly exhibited net emissions of NO2 from the phyllosphere and roots.N2Oand NOX(NO, NO2) emissions from rice phyllosphere and roots at tillering stage could be inhibited by adjusting the composition of visible light(synchronously increasing the proportions of red and blue lights) and appropriately controlling daytime light intensity.
基金Project supported by the National Natural Science Foundation of China (No. 40171048)the Science and Technique Key Project of the Tenth Five-Year Plan of China (No. 2002BA516A03)
文摘A field experiment was conducted on Chinese cabbage (Brassica campestris L. ssp. pekinensis (Lour.) Olsson) in a Nanjing suburb in 2003. The experiment included 4 treatments in a randomized complete block design with 3 replicates: zero chemical fertilizer N (CK); urea at rates of 300 kg N ha^-1 (U300) and 600 kg N ha^-1 (U600), both as basal and two topdressings; and polymer-coated urea at a rate of 180 kg N ha^-1 (PCU180) as a basal application. The acetylene inhibition technique was used to measure denitrification (N2 + N2O) from intact soil cores and N2O emissions in the absence of acetylene. Results showed that compared to (3K total denitrification losses were significantly greater (P ≤ 0.05) in the PCU180, U300, and U600 treatments,while N2O emissions in the U300 and U600 treatments were significantly higher (P ≤ 0.05) than (3K. In the U300 and U600 treatments peaks of denitrification and N2O emission were usually observed after N application. In the polymer-coated urea treatment (PCU180) during the period 20 to 40 days after transplanting, higher denitrification rates and N2O fluxes occurred. Compared with urea, polymer-coated urea did not show any effect on reducing denitrification losses and N2O emissions in terms of percentage of applied N. As temperature gradually decreased from transplanting to harvest, denitrification rates and N2O emissions tended to decrease. A significant (P ≤0.01) positive correlation occurred between denitrification (r = 0.872) or N2O emission (r = 0.781) flux densities and soil temperature in the CK treatment with a stable nitrate content during the whole growing season.
文摘Field measurements were made from June 2001 to May 2002 to evaluate the effect of crop residue application and temperature on CO2, CH4, and N2O emissions within an entire rice-wheat rotation season. Rapeseed cake and wheat straw were incorporated into the soil at a rate of 2.25 t hm(-2) when the rice crop was transplanted in June 2001. Compared with the control, the incorporation of rapeseed cake enhanced the emissions of CO2, CH4, and N2O in the rice-growing season by 12.3%, 252.3%, and 17.5%, respectively, while no further effect was held on the emissions of CO2 and N2O in the following wheat-growing season. The incorporation of wheat straw enhanced the emissions of CO2 and CH4 by 7.1% and 249.6%, respectively, but reduced the N2O emission by 18.8% in the rice-growing season. Significant reductions of 17.8% for the CO2 and of 12.9% for the N2O emission were observed in the following wheat-growing season. A positive correlation existed between the emissions of N2O and CO2 (R-2 = 0.445, n = 73,p < 0.001) from the rice-growing season when N2O was emitted. A trade-off relationship between the emissions of CH4 and N2O was found in the rice-growing season. The CH4 emission was significantly correlated with the CO2 emission for the period from rice transplantation to field drainage, but not for the entire rice-growing season. In addition, air temperature was found to regulate the CO2 emissions from the non-waterlogged period over the entire rice-wheat rotation season and the N2O emissions from the nonwaterlogged period of the rice-growing season, which can be quantitatively described by an exponential function. The temperature coefficient (Q(10)) was then evaluated to be 2.3+/-0.2 for the CO2 emission and 3.9+/-0.4 for the N2O emission, respectively.
基金financial support by the Ministry of Science and Technology of China (Grant No.2018YFC1509006)the National Natural Science Foundation of China (Grant No.71874096)+1 种基金the Macao SAR Government Higher Education Fundthe Macao University of Science and Technology (Grant No.FRG-19-008-MSB)。
文摘Adipic acid is an important petrochemical product,and its production process emits a high concentration of greenhouse gas N_2 O.This paper aims to provide quantitative references for relevant authorities to formulate greenhouse gas control roadmaps.The forecasting method of this paper is consistent with the published national inventory in terms of caliber.Based on the N_2 O abatement technical parameters of adipic acid and the production trend,this paper combines the scenario analysis and provides a measurement of comprehensive N_2 O abatement effect of the entire industry in China.Four future scenarios are assumed.The baseline scenario(BAUS) is a frozen scenario.Three emission abatement scenarios(ANAS,SNAS,and ENAS) are assumed under different strength of abatement driving parameters.The results show that China's adipic acid production process can achieve increasingly significant N_2 O emission abatement effects.Compared to the baseline scenario,by 2030,the N_2 O emission abatements of the three emission abatement scenarios can reach 207-399 kt and the emission abatement ratios can reach 32.5%-62.6%.By 2050,the N_2 O emission abatements for the three emission abatement scenarios can reach 387-540 kt and the emission abatement ratios can reach 71.4%-99.6%.
基金financially supported by the National Natural Science Foundation of China(39790100).
文摘A field study was conducted to investigate the effects of leguminous crop cultivation on nitrous oxide (N2O) emissions from upland agricultural soils. Results demonstrated that N2O emission sequences were that peanut crop> soybean>upland rice in terms of N2O-N flux, being 25.9, 21.2 and 18.4μg/m2·h respectively . While in terms of seasonal emission, the sequence was that soybean > peanut crop > upland rice, being 0.77, 0.70 and 0.55 kg/ha respectively. Results also demonstrated that legume crop treatment emitted much more N2O than non-legume upland rice treatment and that N fertilized treatments emitted more than unfertilized treatments, average N2O-N flux being 25.8 and 17.9μg/m2·h respectively. Legume crop cultivation and N fertilizer, therefore, were one of the important sources of N2O emissions from agricultural fields.
文摘The aim of this work was to examine the emission of N 2O from soils following addition of nitrogen fertilizer with a nitrification inhibitor(+inh) or without the nitrification inhibitor(-inh) at different soil water regime. Higher soil moisture contents increased the total N 2O emissions in all treatments with total emissions being 7 times larger for the CK and >20 times larger for the fertilizer treatments at 85% WFPS(soil water filled pore space) than at 40% WFPS. The rates of N 2O emissions at 40% WFPS under all treatments were small. The maximum emission rate at 55% WFPS without the nitrification inhibitor(-inh) occurred later (day 11) than those of 70% WFPS (-inh) samples (day 8). The inhibition period was 4—22 d for 55% WFPS and 1—15 d for 70% WFPS comparing the rates of N 2O emissions treated (+inh) with (-inh). The maximum emission rates at 85% WFPS were higher than those at the other levels of soil water content for all treatments. The samples(+inh) released less N 2O than (-inh) samples at the early stage. Nevertheless, N 2O emissions from (+inh) samples lasted longer than in the (-inh) treatment. Changes in mineral N at 55%, 70% and 85% WFPS followed the same pattern. NH + 4-N concentrations decreased while NO - 3-N concentrations increased from the beginning of incubation. NH + 4-N concentrations from 40% WFPS treatment declined more slowly than those of the other three levels of soil water content. Nitrification was faster in the (-inh) samples with 100% NH + 4-N nitrified after 22 d(50% WFPS) and 15 d(70% and 85% WFPS). N 2O emissions increased with soil water content. Adding N-fertilizer increased emissions of N 2O. The application of the nitrification inhibitor significantly reduced total N 2O emissions from 30.5%(at 85%WFPS) to 43.6%(at 55% WFPS).
文摘N2O emission has obvious water effect, but the current research is not deep enough. The soil wetting mode of drip irrigation technology is obviously different from that of conventional irrigation. Using the method of soil box indoor simulation, the N2O emission under different soil vertical water content was analyzed. Hydrus Software was used to simulate the soil wetting body under different drip irrigation technical parameters, the relationship between the combination of drip irrigation technical parameters and soil vertical water content was studied, and then the relationship between the N2O emission and the combination of drip irrigation technical parameters was proposed. The results showed that soil N2O emission flux increased with the increase of soil moisture, and the maximum emission flux was three times as much as the minimum emission flux. Under the condition of uniform distribution of soil moisture, soil N2O emission flux was smaller than that under non-uniform distribution of soil moisture. Hydrus software simulation results show that drip flow rate is 2.0 L/h, the irrigation period is 5 days, the irrigation quota is 12 mm, and the soil N2O emission flux is the largest. Adjusting the combination of technical parameters of drip irrigation can reduce soil N2O emission flux.
文摘N2O is one of the important greenhouse gases that cause global warming. N2O emissions from the soil of the facility vegetable land are an important source. It is important to summarize the research on the N2O emissions from the soil in the facility vegetable land, and is also of great significance to study on the emission mechanism of N2O in China’s agricultural fields. This paper summarizes the development status of the facility vegetable plot in China, tracks the progress of soil N2O emission research in the facility vegetable plot, and makes a prospect of the research in this field.
文摘Recent interests in biochar stem from its agronomic benefits and carbon sequestration potentials in soil applications. As a not fully understood newer concept, adding biochar as a bulking agent to animal manure composting has the potential to enhance the performance of composting process and reduce associated N2O emissions. This short report presents emerging trends and knowledge gaps in this research area, and provides an introduction to understand the mechanism by which biochar impacts manure composting performance and N2O fluxes.