期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
FeO^+(^6Σ^+)催化CO还原N2O的理论研究 被引量:2
1
作者 王瑶 傅钢 +1 位作者 陈浙宁 万惠霖 《高等学校化学学报》 SCIE EI CAS CSCD 北大核心 2008年第12期2365-2370,共6页
在B3LYP/6-311+G(2d)//B3LYP/6-31G(d)计算水平下,考察了FeO+(6Σ+)分子如何催化CO还原N2O微观机理.计算结果表明,FeO+(6Σ+)是一种有效的催化剂,其可从N2O中夺取一个O原子,然后再传递给CO,完成整个氧转移过程.结果发现,反应中可能生成... 在B3LYP/6-311+G(2d)//B3LYP/6-31G(d)计算水平下,考察了FeO+(6Σ+)分子如何催化CO还原N2O微观机理.计算结果表明,FeO+(6Σ+)是一种有效的催化剂,其可从N2O中夺取一个O原子,然后再传递给CO,完成整个氧转移过程.结果发现,反应中可能生成各种过氧[Fe(O2)+]或双端氧(OFeO+)物种,其中前者比较稳定,后者更活泼. 展开更多
关键词 Feo+ 氧转移 n2o催化还原
下载PDF
Mechanistic insight into N_2O formation during NO reduction by NH_3 over Pd/CeO_2 catalyst in the absence of O_2 被引量:6
2
作者 Liping Sheng Zhaoxia Ma +6 位作者 Shiyuan Chen Jinze Lou Chengye Li Songda Li Ze Zhang Yong Wang Hangsheng Yang 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2019年第7期1070-1077,共8页
N2O is a major by-product emitted during low-temperature selective catalytic reduction of NO with NH3(NH3-SCR), which causes a series of serious environmental problems. A full understanding of the N2O formation mechan... N2O is a major by-product emitted during low-temperature selective catalytic reduction of NO with NH3(NH3-SCR), which causes a series of serious environmental problems. A full understanding of the N2O formation mechanism is essential to suppress the N2O emission during the low-temperature NH3-SCR, and requires an intensive study of this heterogeneous catalysis process. In this study, we investigated the reaction between NH3 and NO over a Pd/CeO2 catalyst in the absence of O2, using X-ray photoelectron spectroscopy, NH3-temperature-programmed desorption, NO-temperature-programmed desorption, and in-situ Fourier-transform infrared spectroscopy. Our results indicate that the N2O formation mechanism is reaction-temperature-dependent. At temperatures below 250 ℃, the dissociation of HON, which is produced from the reaction between surface H· adatoms and adsorbed NO, is the key process for N2O formation. At temperatures above 250 ℃,the reaction between NO and surface N·, which is produced by NO dissociation, is the only route for N2O formation, and the dissociation of NO is the rate-determining step. Under optimal reaction conditions, a high performance with nearly 100% NO conversion and 100% N2 selectivity could be achieved. These results provide important information to clarify the mechanism of N2O formation and possible suppression of N2 O emission during low-temperature NH3-SCR. 展开更多
关键词 n2o formation no reduction Pd/Ceo2 catalyst in-situ IR spectroscopy Mechanism
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部