BACKGROUND Diabetic wound injury is a significant and common complication in individuals with diabetes.N6-methyladenosine(m6A)-related epigenetic regulation is widely involved in the pathogenesis of diabetes complicat...BACKGROUND Diabetic wound injury is a significant and common complication in individuals with diabetes.N6-methyladenosine(m6A)-related epigenetic regulation is widely involved in the pathogenesis of diabetes complications.However,the function of m6A methyltransferase Wilms tumor 1-associated protein(WTAP)in diabetic wound healing remains elusive.AIM To investigate the potential epigenetic regulatory mechanism of WTAP during diabetic wound healing.METHODS Human umbilical vein endothelial cells(HUVECs)were induced with high glucose(HG)to establish in vitro cell model.Male BALB/c mice were intraperitoneally injected with streptozotocin to mimic diabetes,and full-thickness excision was made to mimic diabetic wound healing.HG-induced HUVECs and mouse models were treated with WTAP siRNAs and DNA methyltransferase 1(DNMT1)overexpression vectors.Cell viability and migration ability were detected by cell counting kit-8 and Transwell assays.In vitro angiogenesis was measured using a tube formation experiment.The images of wounds were captured,and re-epithelialization and collagen deposition of skin tissues were analyzed using hematoxylin and eosin staining and Masson’s trichrome staining.RESULTS The expression of several m6A methyltransferases,including METTL3,METTL14,METTL16,KIAA1429,WTAP,and RBM15,were measured.WTAP exhibited the most significant elevation in HG-induced HUVECs compared with the normal control.WTAP depletion notably restored cell viability and enhanced tube formation ability and migration of HUVECs suppressed by HG.The unclosed wound area of mice was smaller in WTAP knockdowntreated mice than in control mice at nine days post-wounding,along with enhanced re-epithelialization rate and collagen deposition.The m6A levels on DNMT1 mRNA in HUVECs were repressed by WTAP knockdown in HUVECs.The mRNA levels and expression of DNMT1 were inhibited by WTAP depletion in HUVECs.Overexpression of DNMT1 in HUVECs notably reversed the effects of WTAP depletion on HG-induced HUVECs.CONCLUSION WTAP expression is elevated in HG-induced HUVECs and epigenetically regulates the m6A modification of DNMT1 to impair diabetic wound healing.展开更多
As a research hotspot in the field of molecular biology,N6-methyladenosine(m6A)modification has made progress in the treatment of colorectal cancer(CRC),leukemia and other cancers.Numerous studies have demonstrated th...As a research hotspot in the field of molecular biology,N6-methyladenosine(m6A)modification has made progress in the treatment of colorectal cancer(CRC),leukemia and other cancers.Numerous studies have demonstrated that the tumour microenvironment(TME)regulates the level of m6A modification in the host and activates a series of complex epigenetic signalling pathways through interactions with CRC cells,thus affecting the progression and prognosis of CRC.However,with the diversity in the composition of TME factors,this action is reci-procal and complex.Encouragingly,some studies have experimentally revealed that the intestinal flora can alter CRC cell proliferation by directly acting on m6A and thereby altering CRC cell proliferation.This review summarizes the data,supporting the idea that the intestinal flora can influence host m6A levels through pathways such as methyl donor metabolism and thus affect the progression of CRC.We also review the role of m6A modification in the diagnosis,treatment,and prognostic assessment of CRC and discuss the current status,limitations,and potential clinical value of m6A modification in this field.We propose that additional in-depth research on m6A alterations in CRC patients and their TME-related targeted therapeutic issues will lead to better therapeutic outcomes for CRC patients.展开更多
N6-methyladenosine(m6A)is a reversible epigenetic modification, which is one of the most abundant modifiers in eukaryotic cells and has been commonly reported in messenger RNAs and non-coding RNAs. The processing modi...N6-methyladenosine(m6A)is a reversible epigenetic modification, which is one of the most abundant modifiers in eukaryotic cells and has been commonly reported in messenger RNAs and non-coding RNAs. The processing modification of m6A regulates RNA transcription, processing, splicing, degradation, and translation, and plays an important role in the biological process of tumors. Circular RNA, which lacks the 5' cap structure, has been mistakenly regarded as a "junk sequence" generated by accidental shearing during the transcription process. However, it has been found that circRNAs can be involved in tumor invasion and metastasis through microRNAs, binding proteins, translated peptides, and m6A modifications. In this paper, we reviewed the role of m6A modifications in circRNA regulation and their functions in hepatocellular carcinoma and discussed their potential clinical applications and future development in this field.展开更多
N6-methyladenosine(m6A)is an important RNA methylation modification involved in regulating diverse biological processes across multiple species.Hence,the identification of m6A modification sites provides valuable insi...N6-methyladenosine(m6A)is an important RNA methylation modification involved in regulating diverse biological processes across multiple species.Hence,the identification of m6A modification sites provides valuable insight into the biological mechanisms of complex diseases at the post-transcriptional level.Although a variety of identification algorithms have been proposed recently,most of them capture the features of m6A modification sites by focusing on the sequential dependencies of nucleotides at different positions in RNA sequences,while ignoring the structural dependencies of nucleotides in their threedimensional structures.To overcome this issue,we propose a cross-species end-to-end deep learning model,namely CR-NSSD,which conduct a cross-domain representation learning process integrating nucleotide structural and sequential dependencies for RNA m6A site identification.Specifically,CR-NSSD first obtains the pre-coded representations of RNA sequences by incorporating the position information into single-nucleotide states with chaos game representation theory.It then constructs a crossdomain reconstruction encoder to learn the sequential and structural dependencies between nucleotides.By minimizing the reconstruction and binary cross-entropy losses,CR-NSSD is trained to complete the task of m6A site identification.Extensive experiments have demonstrated the promising performance of CR-NSSD by comparing it with several state-of-the-art m6A identification algorithms.Moreover,the results of cross-species prediction indicate that the integration of sequential and structural dependencies allows CR-NSSD to capture general features of m6A modification sites among different species,thus improving the accuracy of cross-species identification.展开更多
The biological roles of N6 methylation of nucleic acids have been extensively studied.Adenine methylation of RNA is the most prevalent RNA modification and has widespread effects on RNA splicing,translation,localizati...The biological roles of N6 methylation of nucleic acids have been extensively studied.Adenine methylation of RNA is the most prevalent RNA modification and has widespread effects on RNA splicing,translation,localization,and stability.Aberrant dynamic regulation of RNA N6-methyladenosine(m6 A)has been reported in numerous human diseases,including several cancers.In recent years,eukaryotic DNA N6-methyladenosine(6 mA)has also been reported and implicated in cancer progression and tumorigenesis.In this review,we summarize the contributions of N6-methyladenosine modification to cancer biology and pathogenesis in the context of both RNA and DNA.We also highlight the clinical relevance of targeting these modifications as a therapeutic strategy for cancer.展开更多
AIM:To characterize the N6-methyladenosine(m6A)modification patterns in long non-coding RNAs(lncRNAs)in sporadic congenital cataract(CC)and age-related cataract(ARC).METHODS:Anterior capsule of the lens were collected...AIM:To characterize the N6-methyladenosine(m6A)modification patterns in long non-coding RNAs(lncRNAs)in sporadic congenital cataract(CC)and age-related cataract(ARC).METHODS:Anterior capsule of the lens were collected from patients with CC and ARC.Methylated RNA immunoprecipitation with next-generation sequencing and RNA sequencing were performed to identify m6A-tagged lncRNAs and lncRNAs expression.Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses and Gene Ontology annotation were used to predict potential functions of the m6A-lncRNAs.RESULTS:Large amount of m6A peaks within lncRNA were identified for both CC and ARC,while the level was much higher in ARC(49870 peaks)than that in CC(18688 peaks),yet those difference between ARC in younger age group(ARC-1)and ARC in elder age group(ARC-2)was quite slight.A total of 1305 hypermethylated and 1178 hypomethylated lncRNAs,as well as 182 differential expressed lncRNAs were exhibited in ARC compared with CC.On the other hand,5893 hypermethylated and 5213 hypomethylated lncRNAs,as well as 155 significantly altered lncRNA were identified in ARC-2 compared with ARC-1.Altered lncRNAs in ARC were mainly associated with the organization and biogenesis of intracellular organelles,as well as nucleotide excision repair.CONCLUSION:Our results for the first time present an overview of the m6A methylomes of lncRNA in CC and ARC,providing a solid basis and uncovering a new insight to reveal the potential pathogenic mechanism of CC and ARC.展开更多
BACKGROUND Increasing evidence has demonstrated that N6-methyladenosine(m6A)RNA modification plays an essential role in a wide range of pathological conditions.Impaired autophagy is a critical hallmark of acute pancre...BACKGROUND Increasing evidence has demonstrated that N6-methyladenosine(m6A)RNA modification plays an essential role in a wide range of pathological conditions.Impaired autophagy is a critical hallmark of acute pancreatitis(AP).AIM To explore the role of the m6A modification of ZKSCAN3 in the regulation of autophagy in AP.METHODS The AP mouse cell model was established by cerulein-treated mouse pancreatic acinar cells(MPC-83),and the results were confirmed by the levels of amylase and inflammatory factors.Autophagy activity was evaluated by specific identification of the autophagy-related microstructure and the expression of autophagy-related genes.ZKSCAN3 and ALKBH5 were knocked down to study the function in AP.A m6A RNA binding protein immunoprecipitation assay was used to study how the m6A modification of ZKSCAN3 mRNA is regulated by ALKBH.RESULTS The increased expression of amylase and inflammatory factors in the supernatant and the accumulation of autophagic vacuoles verified that the AP mouse cell model was established.The downregulation of LAMP2 and upregulation of LC3-II/I and SQSTM1 demonstrated that autophagy was impaired in AP.The expression of ZKSCAN3 was upregulated in AP.Inhibition of ZKSCAN3 increased the expression of LAMP2 and decreased the expression of the inflammatory factors,LC3-II/I and SQSTM1.Furthermore,ALKBH5 was upregulated in AP.Knockdown of ALKBH5 downregulated ZKSCAN3 expression and restored decreased autophagic flux in AP.Notably,the bioinformatic analysis revealed 23 potential m6A modification sites on ZKSCAN3 mRNA.The m6A modification of ZKSCAN3 mRNA was significantly decreased in AP.Knockdown of ALKBH5 increased the modification of ZKSCAN3 mRNA,which confirmed that ALKBH5 upregulated ZKSCAN3 expression in a m6A-dependent manner.CONCLUSION ALKBH5 inhibits autophagic flux through m6A demethylation of ZKSCAN3 mRNA in AP,thereby aggravating the severity of the disease.展开更多
N6-methyladenosine(m6A)modification is a reversible process promoted by“writers”,inhibited by“erasers”,and processed by“readers”.During the last decade,increasing emphasis has been placed on the underlying roles...N6-methyladenosine(m6A)modification is a reversible process promoted by“writers”,inhibited by“erasers”,and processed by“readers”.During the last decade,increasing emphasis has been placed on the underlying roles of m6A modification owing to their great importance in biological significance.The abnormal regulation of m6A modification will lead to aberrant cellular behavior and various diseases.Recently,studies have demonstrated that m6A modification is closely associated with the genesis and progression of ocular surface diseases(OSDs).This review focus on the role of m6A modification and research progress in OSDs including fungal keratitis,herpes simplex keratitis,immunerelated keratoconjunctival diseases,pterygium,ocular chemical burns,and Graves’ophthalmopathy,which may provide new insights into and prospective applications for OSDs.展开更多
Objective:Middle ear cholesteatoma is a non-tumorous condition that typically leads to hearing loss,bone destruction,and other severe complications.Despite surgery being the primary treatment,the recurrence rate remai...Objective:Middle ear cholesteatoma is a non-tumorous condition that typically leads to hearing loss,bone destruction,and other severe complications.Despite surgery being the primary treatment,the recurrence rate remains high.Therefore,exploring the molecular mechanisms underlying cholesteatoma is crucial for discovering new therapeutic approaches.This study aims to explore the involvement of N6-methyladenosine(m^(6)A)methylation in long non-coding RNAs(lncRNAs)in the biological functions and related pathways of middle ear cholesteatoma.Methods:The m^(6)A modification patterns of lncRNA in middle ear cholesteatoma tissues(n=5)and normal post-auricular skin tissues(n=5)were analyzed using an lncRNA m^(6)A transcriptome microarray.Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway analyses were conducted to identify potential biological functions and signaling pathways involved in the pathogenesis of middle ear cholesteatoma.Methylated RNA immunoprecipitation(MeRIP)-PCR was used to validate the m^(6)A modifications in cholesteatoma and normal skin tissues.Results:Compared with normal skin tissues,1525 lncRNAs were differentially methylated in middle ear cholesteatoma tissues,with 1048 showing hypermethylation and 477 showing hypomethylation[fold change(FC)≥3 or<1/3,P<0.05].GO enrichment analysis indicated that hypermethylated lncRNAs were involved in protein phosphatase inhibitor activity,neuron-neuron synapse,and regulation ofα-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid(AMPA)receptor activity.Hypomethylated lncRNAs were associated with mRNA methyltransferase activity,secretory granule membrane,and mRNA methylation.KEGG analysis revealed that hypermethylated lncRNAs were mainly associated with 5 pathways:the Hedgehog signaling pathway,viral protein interaction with cytokines and cytokine receptors,mitogen-activated protein kinase(MAPK)signaling pathway,cytokine-cytokine receptor interaction,and adrenergic signaling in cardiomyocytes.Hypomethylated lncRNAs were mainly involved in 4 pathways:Renal cell carcinoma,tumor necrosis factor signaling pathway,transcriptional misregulation in cancer,and cytokine-cytokine receptor interaction.Additionally,MeRIP-PCR confirmed the changes in m^(6)A methylation levels in NR_033339,NR_122111,NR_130744,and NR_026800,consistent with microarray analysis.Real-time PCR also confirmed the significant upregulation of MAPK1 and NF-κB,key genes in the MAPK signaling pathway.Conclusion:This study reveals the m^(6)A modification patterns of lncRNAs in middle ear cholesteatoma,suggests a direction for further research into the role of lncRNA m^(6)A modification in the etiology of cholesteatoma.The findings provide potential therapeutic targets for the treatment of middle ear cholesteatoma.展开更多
BACKGROUND Through experimental research on the biological function of GATA6-AS1,it was confirmed that GATA6-AS1 can inhibit the proliferation,invasion,and migration of gastric cancer cells,suggesting that GATA6-AS1 p...BACKGROUND Through experimental research on the biological function of GATA6-AS1,it was confirmed that GATA6-AS1 can inhibit the proliferation,invasion,and migration of gastric cancer cells,suggesting that GATA6-AS1 plays a role as an anti-oncogene in the occurrence and development of gastric cancer.Further experi-ments confirmed that the overexpression of fat mass and obesity-associated protein(FTO)inhibited the expression of GATA6-AS1,thereby promoting the occurrence and development of gastric cancer.AIM To investigate the effects of GATA6-AS1 on the proliferation,invasion and migration of gastric cancer cells and its mechanism of action.METHODS We used bioinformatics methods to analyze the Cancer Genome Atlas(https://portal.gdc.cancer.gov/.The Cancer Genome Atlas)and download expression data for GATA6-AS1 in gastric cancer tissue and normal tissue.We also constructed a GATA6-AS1 lentivirus overexpression vector which was transfected into gastric cancer cells to investigate its effects on proliferation,migration and invasion,and thereby clarify the expression of GATA6-AS1 in gastric cancer and its biological role in the genesis and development of gastric cancer.Next,we used a database(http://starbase.sysu.edu.cn/starbase2/)to analysis GATA6-AS1 whether by m6A methylation modify regulation and predict the methyltransferases that may methylate GATA6-AS1.Furthermore,RNA immunoprecipitation experiments confirmed that GATA6-AS1 was able to bind to the m6A methylation modification enzyme.These data allowed us to clarify the ability of m6A methylase to influence the action of GATA6-AS1 and its role in the occurrence and development of gastric cancer.RESULTS Low expression levels of GATA6-AS1 were detected in gastric cancer.We also determined the effects of GATA6-AS1 overexpression on the biological function of gastric cancer cells.GATA6-AS1 had strong binding ability with the m6A demethylase FTO,which was expressed at high levels in gastric cancer and negatively correlated with the expression of GATA6-AS1.Following transfection with siRNA to knock down the expression of FTO,the expression levels of GATA6-AS1 were up-regulated.Finally,the proliferation,migration and invasion of gastric cancer cells were all inhibited following the knockdown of FTO expression.CONCLUSION During the occurrence and development of gastric cancer,the overexpression of FTO may inhibit the expression of GATA6-AS1,thus promoting the proliferation and metastasis of gastric cancer.展开更多
BACKGROUND N6-methyladenosine(m6A)methylation modification exists in Epstein-Barr virus(EBV)primary infection,latency,and lytic reactivation.It also modifies EBV latent genes and lytic genes.EBV-associated gastric can...BACKGROUND N6-methyladenosine(m6A)methylation modification exists in Epstein-Barr virus(EBV)primary infection,latency,and lytic reactivation.It also modifies EBV latent genes and lytic genes.EBV-associated gastric cancer(EBVaGC)is a distinctive molecular subtype of GC.We hypothesized EBV and m6A methylation regulators interact with each other in EBVaGC to differentiate it from other types of GC.AIM To investigate the mechanisms of m6A methylation regulators in EBVaGC to determine the differentiating factors from other types of GC.METHODS First,The Cancer Gene Atlas and Gene Expression Omnibus databases were used to analyze the expression pattern of m6A methylation regulators between EBVaGC and EBV-negative GC(EBVnGC).Second,we identified Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)functional enrichment of m6A-related differentially expressed genes.We quantified the relative abundance of immune cells and inflammatory factors in the tumor microenvironment(TME).Finally,cell counting kit-8 cell proliferation test,transwell test,and flow cytometry were used to verify the effect of insulin-like growth factor binding protein 1(IGFBP1)in EBVaGC cell lines.RESULTS m6A methylation regulators were involved in the occurrence and development of EBVaGC.Compared with EBVnGC,the expression levels of m6A methylation regulators Wilms tumor 1-associated protein,RNA binding motif protein 15B,CBL proto-oncogene like 1,leucine rich pentatricopeptide repeat containing,heterogeneous nuclear ribonucleoprotein A2B1,IGFBP1,and insulin-like growth factor 2 binding protein 1 were significantly downregulated in EBVaGC(P<0.05).The overall survival rate of EBVaGC patients with a lower expression level of IGFBP1 was significantly higher(P=0.046).GO and KEGG functional enrichment analyses showed that the immunity pathways were significantly activated and rich in immune cell infiltration in EBVaGC.Compared with EBVnGC,the infiltration of activated CD4+T cells,activated CD8+T cells,monocytes,activated dendritic cells,and plasmacytoid dendritic cells were significantly upregulated in EBVaGC(P<0.001).In EBVaGC,the expression level of proinflammatory factors interleukin(IL)-17,IL-21,and interferon-γ and immunosuppressive factor IL-10 were significantly increased(P<0.05).In vitro experiments demonstrated that the expression level of IGFBP1 was significantly lower in an EBVaGC cell line(SNU719)than in an EBVnGC cell line(AGS)(P<0.05).IGFBP1 overexpression significantly attenuated proliferation and migration and promoted the apoptosis levels in SNU719.Interfering IGFBP1 significantly promoted proliferation and migration and attenuated the apoptosis levels in AGS.CONCLUSION m6A regulators could remodel the TME of EBVaGC,which is classified as an immune-inflamed phenotype and referred to as a“hot”tumor.Among these regulators,we demonstrated that IGFBP1 affected proliferation,migration,and apoptosis.展开更多
Growing evidence supports that cancer progression is closely associated with the tumor microenvironment and immune evasion.Importantly,recent studies have revealed the crucial roles of epigenetic regulators in shaping...Growing evidence supports that cancer progression is closely associated with the tumor microenvironment and immune evasion.Importantly,recent studies have revealed the crucial roles of epigenetic regulators in shaping the tumor microenvironment and restoring immune recognition.N^(6)-methyladenosine(m^(6)A)modification,the most prevalent epigenetic modification of mammalian mRNAs,has essential functions in regulating the processing and metabolism of its targeted RNAs,and therefore affects various biological processes including tumorigenesis and progression.Recent studies have demonstrated the critical functions and molecular mechanisms underlying abnormal m^(6)A modification in the regulation of tumor immunity.In this review,we summarize recent research progress in the potential roles of m^(6)A modification in tumor immunoregulation,with a special focus on the anti-tumor processes of immune cells and involvement in immune-associated molecules and pathways.Furthermore,we review current knowledge regarding the close correlation between m6A-related risk signatures and the tumor immune microenvironment landscape,and we discuss the prognostic value and therapeutic efficacy of m^(6)A regulators in a variety of cancer types.展开更多
BACKGROUND Cataracts remain a prime reason for visual disturbance and blindness all over the world,despite the capacity for successful surgical replacement with artificial lenses.Diabetic cataract(DC),a metabolic comp...BACKGROUND Cataracts remain a prime reason for visual disturbance and blindness all over the world,despite the capacity for successful surgical replacement with artificial lenses.Diabetic cataract(DC),a metabolic complication,usually occurs at an earlier age and progresses faster than age-related cataracts.Evidence has linked N6-methyladenosine(m6A)to DC progression.However,there exists a lack of understanding regarding RNA m6A modifications and the role of m6A in DC pathogenesis.AIM To elucidate the role played by altered m6A and differentially expressed mRNAs(DEmRNAs)in DC.METHODS Anterior lens capsules were collected from the control subjects and patients with DC.M6A epitranscriptomic microarray was performed to investigate the altered m6A modifications and determine the DEmRNAs.Through Gene Ontology and pathway enrichment(Kyoto Encyclopedia of Genes and Genomes)analyses,the potential role played by dysregulated m6A modification was predicted.Real-time polymerase chain reaction was further carried out to identify the dysregulated expression of RNA methyltransferases,demethylases,and readers.RESULTS Increased m6A abundance levels were found in the total mRNA of DC samples.Bioinformatics analysis predicted that ferroptosis pathways could be associated with m6A-modified mRNAs.The levels of five methylation-related genes-RBM15,WTAP,ALKBH5,FTO,and YTHDF1-were upregulated in DC samples.Upregulation of RBM15 expression was verified in SRA01/04 cells with high-glucose medium and in samples from DC patients.CONCLUSION M6a mRNA modifications may be involved in DC progression via the ferroptosis pathway,rendering novel insights into therapeutic strategies for DC.展开更多
Background: N6-Methyladenosine(m^6A), the most prevalent modification in mammalian m RNA, plays important roles in numerous biological processes. Several m^6A associated proteins such as methyltransferase like 3(METTL...Background: N6-Methyladenosine(m^6A), the most prevalent modification in mammalian m RNA, plays important roles in numerous biological processes. Several m^6A associated proteins such as methyltransferase like 3(METTL3),methyltransferase like 14(METTL14), α-ketoglutarate-dependent dioxygenase Alk B homolog 5(ALKBH5) and YTH domain containing 2(YTHDC2) are involved in the regulation of spermatogenesis and oogenesis. However, the role of the first detected m^6A demethylase, fat mass and obesity associate protein(FTO), in germ cells remains elusive.Elucidation of FTO roles in the regulation of germ cell fate will provide novel insights into the mammalian reproduction.Methods: Mouse GC-1 spg cells were treated with the ester form of meclofenamic acid(MA2) to inhibit the demethylase activity of FTO. The cellular m^6A and m^6Amlevel were analyzed through high performance liquid chromatography combined with tandem mass spectrometry(HPLC/MS-MS). The cell apoptosis was detected via TUNEL and flow cytometry. The cell proliferation was detected through Ed U and western blot. The m RNA level of core cyclin dependent kinases(CDKs) was quantified via q-PCR. RNA decay assay were performed to detect RNA stability. Dual fluorescence assay was conducted to study whether MA2 affects the expression of CDK2 dependent on the m^6A modification at 3’UTR.Results: MA2 significantly increased the cellular m^6A level and down-regulated the expression of CDK1, CDK2, CDK6 and Cd C25 a, resulting in arrest of G1/S transition and decrease of cell proliferation. MA2 downregulated CDK2 m RNA stability. Additionally, mutation of the predicted m^6A sites in the Cdk2–3’UTR could mitigated the degradation of CDK2 m RNA after MA2 treatment.Conclusion: MA2 affected CDKs expression through the m^6A-dependent m RNA degradation pathway, and thus repressed spermatogonial proliferation.展开更多
BACKGROUND Severe acute pancreatitis(SAP)is a deadly inflammatory disease with complex pathogenesis and lack of effective therapeutic options.N6-methyladenosine(m6A)modification of circRNAs plays important roles in ph...BACKGROUND Severe acute pancreatitis(SAP)is a deadly inflammatory disease with complex pathogenesis and lack of effective therapeutic options.N6-methyladenosine(m6A)modification of circRNAs plays important roles in physiological and pathological processes.However,the roles of m6A circRNA in the pathological process of SAP remains unknown.AIM To identify transcriptome-wide map of m6A circRNAs and to determine their biological significance and potential mechanisms in SAP.METHODS The SAP in C57BL/6 mice was induced using 4%sodium taurocholate salt.The transcriptome-wide map of m6A circRNAs was identified by m6A-modified RNA immunoprecipitation sequencing.The biological significance of circRNAs with differentially expressed m6A peaks was evaluated through gene ontology and Kyoto Encyclopedia of Genes and Genomes analysis.The underlying mechanism of m6A circRNAs in SAP was analyzed by constructing of m6A circRNAmicroRNA networks.The expression of demethylases was determined by quantitative polymerase chain reaction and western blot to deduce the possible mechanism of reversible m6A process in SAP.RESULTS Fifty-seven circRNAs with differentially expressed m6A peaks were identified by m6A-modified RNA immunoprecipitation sequencing,of which 32 were upregulated and 25 downregulated.Functional analysis of these m6A circRNAs in SAP found some important pathways involved in the pathogenesis of SAP,such as regulation of autophagy and protein digestion.In m6A circRNA–miRNA networks,several important miRNAs participated in the occurrence and progression of SAP were found to bind to these m6A circRNAs,such as miR-24-3p,miR-26a,miR-92b,miR-216b,miR-324-5p and miR-762.Notably,the total m6A level of circRNAs was reduced,while the demethylase alkylation repair homolog 5 was upregulated in SAP.CONCLUSION m6A modification of circRNAs may be involved in the pathogenesis of SAP.Our findings may provide novel insights to explore the possible pathogenetic mechanism of SAP and seek new potential therapeutic targets for SAP.展开更多
The study of modified RNA known as epitranscriptomics has become increasingly relevant in our understanding of disease-modifying mechanisms.Methylation of N6 adenosine(m^(6)A)and C5 cytosine(m^(5)C)bases occur on mRNA...The study of modified RNA known as epitranscriptomics has become increasingly relevant in our understanding of disease-modifying mechanisms.Methylation of N6 adenosine(m^(6)A)and C5 cytosine(m^(5)C)bases occur on mRNAs,tRNA,mt-tRNA,and rRNA species as well as non-coding RNAs.With emerging knowledge of RNA binding proteins that act as writer,reader,and eraser effector proteins,comes a new understanding of physiological processes controlled by these systems.Such processes when spatiotemporally disrupted within cellular nanodomains in highly specialized tissues such as the brain,give rise to different forms of disease.In this review,we discuss accumulating evidence that changes in the m^(6)A and m^(5)C methylation systems contribute to neurocognitive disorders.Early studies first identified mutations within FMR1 to cause intellectual disability Fragile X syndromes several years before FMR1 was identified as an m^(6)A RNA reader protein.Subsequently,familial mutations within the m^(6)A writer gene METTL5,m^(5)C writer genes NSUN2,NSUN3,NSUN5,and NSUN6,as well as THOC2 and THOC6 that form a protein complex with the m^(5)C reader protein ALYREF,were recognized to cause intellectual development disorders.Similarly,differences in expression of the m^(5)C writer and reader effector proteins,NSUN6,NSUN7,and ALYREF in brain tissue are indicated in individuals with Alzheimer's disease,individuals with a high neuropathological load or have suffered traumatic brain injury.Likewise,an abundance of m^(6)A reader and anti-reader proteins are reported to change across brain regions in Lewy bodies diseases,Alzheimer's disease,and individuals with high cognitive reserve.m^(6)A-modified RNAs are also reported significantly more abundant in dementia with Lewy bodies brain tissue but significantly reduced in Parkinson's disease tissue,whilst modified RNAs are misplaced within diseased cells,particularly where synapses are located.In parahippocampal brain tissue,m^(6)A modification is enriched in transcripts associated with psychiatric disorders including conditions with clear cognitive deficits.These findings indicate a diverse set of molecular mechanisms are influenced by RNA methylation systems that can cause neuronal and synaptic dysfunction underlying neurocognitive disorders.Targeting these RNA modification systems brings new prospects for neural regenerative therapies.展开更多
Objective N6-methyladenosine(m^(6)A)is a common epigenetic modification in eukaryotes.In this study,we explore the potential impact of m^(6)A-associated single nucleotide polymorphisms(m^(6)A-SNPs)on heart failure(HF)...Objective N6-methyladenosine(m^(6)A)is a common epigenetic modification in eukaryotes.In this study,we explore the potential impact of m^(6)A-associated single nucleotide polymorphisms(m^(6)A-SNPs)on heart failure(HF).Methods Data from genome-wide association studies(GWAS)investigating HF in humans and from m^(6)A-SNPs datasets were used to identify HF-associated m^(6)A-SNPs.Their functions were explored using expression quantitative trait locus(eQTL),gene expression,and gene enrichment analyses.Mediation protein quantitative trait locus(pQTL)-Mendelian randomization(MR)was used to investigate the potential mechanism between critical protein levels and risk factors for HF.Results We screened 44 HF-associated m^(6)A-SNPs,including 10 m^(6)A-SNPs that showed eQTL signals and differential expressions in HF.The SNP rs1801270 in CDKN1A showed the strongest association with HF(P=7.75×10^(−6)).Additionally,MR verified the genetic association between the CDKN1A protein and HF,as well as the mediating effect of blood pressure(BP)in this pathway.Higher circulating level of CDKN1A was associated with a lower risk of HF(odds ratio[OR]=0.82,95%confidence interval[CI]:0.69 to 0.99).The proportions of hypertension,systolic BP,and diastolic BP were 48.10%,28.94%,and 18.02%,respectively.Associations of PDIA6(P=1.30×10^(−2))and SMAD3(P=4.80×10^(−2))with HF were also detected.Conclusion Multiple HF-related m^(6)A-SNPs were identified in this study.Genetic associations of CDKN1A and other proteins with HF and its risk factors were demonstrated,providing new ideas for further exploration of the molecular mechanisms of HF.展开更多
Background Intramuscular fat(IMF)content is a critical indicator of pork quality,and abnormal IMF is also relevant to human disease as well as aging.Although N6-methyladenosine(m^(6)A)RNA modification was recently fou...Background Intramuscular fat(IMF)content is a critical indicator of pork quality,and abnormal IMF is also relevant to human disease as well as aging.Although N6-methyladenosine(m^(6)A)RNA modification was recently found to regulate adipogenesis in porcine intramuscular fat,however,the underlying molecular mechanisms was still unclear.Results In this work,we collected 20 longissimus dorsi muscle samples with high(average 3.95%)or low IMF content(average 1.22%)from a unique heterogenous swine population for m^(6)A sequencing(m^(6)A-seq).We discovered 70genes show both differential RNA expression and m^(6)A modification from high and low IMF group,including ADIPOQ and SFRP1,two hub genes inferred through gene co-expression analysis.Particularly,we observed ADIPOQ,which contains three m^(6)A modification sites within 3’untranslated and protein coding region,could promote porcine intramuscular preadipocyte differentiation in an m^(6)A-dependent manner.Furthermore,we found the YT521-B homology domain family protein 1(YTHDF1)could target and promote ADIPOQ mRNA translation.Conclusions Our study provided a comprehensive profiling of m^(6)A methylation in porcine longissimus dorsi muscle and characterized the involvement of m^(6)A epigenetic modification in the regulation of ADIPOQ mRNA on IMF deposition through an m^(6)A-YTHDF1-dependent manner.展开更多
文摘BACKGROUND Diabetic wound injury is a significant and common complication in individuals with diabetes.N6-methyladenosine(m6A)-related epigenetic regulation is widely involved in the pathogenesis of diabetes complications.However,the function of m6A methyltransferase Wilms tumor 1-associated protein(WTAP)in diabetic wound healing remains elusive.AIM To investigate the potential epigenetic regulatory mechanism of WTAP during diabetic wound healing.METHODS Human umbilical vein endothelial cells(HUVECs)were induced with high glucose(HG)to establish in vitro cell model.Male BALB/c mice were intraperitoneally injected with streptozotocin to mimic diabetes,and full-thickness excision was made to mimic diabetic wound healing.HG-induced HUVECs and mouse models were treated with WTAP siRNAs and DNA methyltransferase 1(DNMT1)overexpression vectors.Cell viability and migration ability were detected by cell counting kit-8 and Transwell assays.In vitro angiogenesis was measured using a tube formation experiment.The images of wounds were captured,and re-epithelialization and collagen deposition of skin tissues were analyzed using hematoxylin and eosin staining and Masson’s trichrome staining.RESULTS The expression of several m6A methyltransferases,including METTL3,METTL14,METTL16,KIAA1429,WTAP,and RBM15,were measured.WTAP exhibited the most significant elevation in HG-induced HUVECs compared with the normal control.WTAP depletion notably restored cell viability and enhanced tube formation ability and migration of HUVECs suppressed by HG.The unclosed wound area of mice was smaller in WTAP knockdowntreated mice than in control mice at nine days post-wounding,along with enhanced re-epithelialization rate and collagen deposition.The m6A levels on DNMT1 mRNA in HUVECs were repressed by WTAP knockdown in HUVECs.The mRNA levels and expression of DNMT1 were inhibited by WTAP depletion in HUVECs.Overexpression of DNMT1 in HUVECs notably reversed the effects of WTAP depletion on HG-induced HUVECs.CONCLUSION WTAP expression is elevated in HG-induced HUVECs and epigenetically regulates the m6A modification of DNMT1 to impair diabetic wound healing.
基金Supported by the National Natural Science Foundation of China,No.82100599 and No.81960112the Jiangxi Provincial Department of Scientific introductions,No.20212ACB216003 and No.20242BAB26122+1 种基金the Science and Technology Plan of Jiangxi Provincial Administration of Traditional Chinese Medicine,No.2023Z021the Young Talents Project of Jiangxi Provincial Academic and Technical Leaders Training Program for Major Disciplines,No.20204BCJ23022.
文摘As a research hotspot in the field of molecular biology,N6-methyladenosine(m6A)modification has made progress in the treatment of colorectal cancer(CRC),leukemia and other cancers.Numerous studies have demonstrated that the tumour microenvironment(TME)regulates the level of m6A modification in the host and activates a series of complex epigenetic signalling pathways through interactions with CRC cells,thus affecting the progression and prognosis of CRC.However,with the diversity in the composition of TME factors,this action is reci-procal and complex.Encouragingly,some studies have experimentally revealed that the intestinal flora can alter CRC cell proliferation by directly acting on m6A and thereby altering CRC cell proliferation.This review summarizes the data,supporting the idea that the intestinal flora can influence host m6A levels through pathways such as methyl donor metabolism and thus affect the progression of CRC.We also review the role of m6A modification in the diagnosis,treatment,and prognostic assessment of CRC and discuss the current status,limitations,and potential clinical value of m6A modification in this field.We propose that additional in-depth research on m6A alterations in CRC patients and their TME-related targeted therapeutic issues will lead to better therapeutic outcomes for CRC patients.
基金Key Project Research and Development Plan of Hainan Province(No.ZDYF2020134,ZDYF2022SHFZ283)Natural Science Foundation of Hainan Province(No.821QN391)。
文摘N6-methyladenosine(m6A)is a reversible epigenetic modification, which is one of the most abundant modifiers in eukaryotic cells and has been commonly reported in messenger RNAs and non-coding RNAs. The processing modification of m6A regulates RNA transcription, processing, splicing, degradation, and translation, and plays an important role in the biological process of tumors. Circular RNA, which lacks the 5' cap structure, has been mistakenly regarded as a "junk sequence" generated by accidental shearing during the transcription process. However, it has been found that circRNAs can be involved in tumor invasion and metastasis through microRNAs, binding proteins, translated peptides, and m6A modifications. In this paper, we reviewed the role of m6A modifications in circRNA regulation and their functions in hepatocellular carcinoma and discussed their potential clinical applications and future development in this field.
基金supported in part by the National Natural Science Foundation of China(62373348)the Natural Science Foundation of Xinjiang Uygur Autonomous Region(2021D01D05)+1 种基金the Tianshan Talent Training Program(2023TSYCLJ0021)the Pioneer Hundred Talents Program of Chinese Academy of Sciences.
文摘N6-methyladenosine(m6A)is an important RNA methylation modification involved in regulating diverse biological processes across multiple species.Hence,the identification of m6A modification sites provides valuable insight into the biological mechanisms of complex diseases at the post-transcriptional level.Although a variety of identification algorithms have been proposed recently,most of them capture the features of m6A modification sites by focusing on the sequential dependencies of nucleotides at different positions in RNA sequences,while ignoring the structural dependencies of nucleotides in their threedimensional structures.To overcome this issue,we propose a cross-species end-to-end deep learning model,namely CR-NSSD,which conduct a cross-domain representation learning process integrating nucleotide structural and sequential dependencies for RNA m6A site identification.Specifically,CR-NSSD first obtains the pre-coded representations of RNA sequences by incorporating the position information into single-nucleotide states with chaos game representation theory.It then constructs a crossdomain reconstruction encoder to learn the sequential and structural dependencies between nucleotides.By minimizing the reconstruction and binary cross-entropy losses,CR-NSSD is trained to complete the task of m6A site identification.Extensive experiments have demonstrated the promising performance of CR-NSSD by comparing it with several state-of-the-art m6A identification algorithms.Moreover,the results of cross-species prediction indicate that the integration of sequential and structural dependencies allows CR-NSSD to capture general features of m6A modification sites among different species,thus improving the accuracy of cross-species identification.
基金supported by a grant from Westlake University Startup Funding(Grant No.101476021901)。
文摘The biological roles of N6 methylation of nucleic acids have been extensively studied.Adenine methylation of RNA is the most prevalent RNA modification and has widespread effects on RNA splicing,translation,localization,and stability.Aberrant dynamic regulation of RNA N6-methyladenosine(m6 A)has been reported in numerous human diseases,including several cancers.In recent years,eukaryotic DNA N6-methyladenosine(6 mA)has also been reported and implicated in cancer progression and tumorigenesis.In this review,we summarize the contributions of N6-methyladenosine modification to cancer biology and pathogenesis in the context of both RNA and DNA.We also highlight the clinical relevance of targeting these modifications as a therapeutic strategy for cancer.
基金Supported by the National Natural Science Foundation of China(No.82171069No.82371070)+3 种基金Shanghai Science and Technology Committee(No.22015820200)Shanghai Municipal Health Commission Innovative Medical Device Application Demonstration Project(No.23SHS03500-03)Project of Shanghai Municipal Commission of Health and Family Planning(No.202140224)Grants from Interdisciplinary Program of Shanghai Jiao Tong University(No.YG2021QN52).
文摘AIM:To characterize the N6-methyladenosine(m6A)modification patterns in long non-coding RNAs(lncRNAs)in sporadic congenital cataract(CC)and age-related cataract(ARC).METHODS:Anterior capsule of the lens were collected from patients with CC and ARC.Methylated RNA immunoprecipitation with next-generation sequencing and RNA sequencing were performed to identify m6A-tagged lncRNAs and lncRNAs expression.Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses and Gene Ontology annotation were used to predict potential functions of the m6A-lncRNAs.RESULTS:Large amount of m6A peaks within lncRNA were identified for both CC and ARC,while the level was much higher in ARC(49870 peaks)than that in CC(18688 peaks),yet those difference between ARC in younger age group(ARC-1)and ARC in elder age group(ARC-2)was quite slight.A total of 1305 hypermethylated and 1178 hypomethylated lncRNAs,as well as 182 differential expressed lncRNAs were exhibited in ARC compared with CC.On the other hand,5893 hypermethylated and 5213 hypomethylated lncRNAs,as well as 155 significantly altered lncRNA were identified in ARC-2 compared with ARC-1.Altered lncRNAs in ARC were mainly associated with the organization and biogenesis of intracellular organelles,as well as nucleotide excision repair.CONCLUSION:Our results for the first time present an overview of the m6A methylomes of lncRNA in CC and ARC,providing a solid basis and uncovering a new insight to reveal the potential pathogenic mechanism of CC and ARC.
基金Supported by National Natural Science Foundation of China,No.81802450and Natural Science Foundation of Hunan Province,No.2020JJ4133 and No.2021JJ31135.
文摘BACKGROUND Increasing evidence has demonstrated that N6-methyladenosine(m6A)RNA modification plays an essential role in a wide range of pathological conditions.Impaired autophagy is a critical hallmark of acute pancreatitis(AP).AIM To explore the role of the m6A modification of ZKSCAN3 in the regulation of autophagy in AP.METHODS The AP mouse cell model was established by cerulein-treated mouse pancreatic acinar cells(MPC-83),and the results were confirmed by the levels of amylase and inflammatory factors.Autophagy activity was evaluated by specific identification of the autophagy-related microstructure and the expression of autophagy-related genes.ZKSCAN3 and ALKBH5 were knocked down to study the function in AP.A m6A RNA binding protein immunoprecipitation assay was used to study how the m6A modification of ZKSCAN3 mRNA is regulated by ALKBH.RESULTS The increased expression of amylase and inflammatory factors in the supernatant and the accumulation of autophagic vacuoles verified that the AP mouse cell model was established.The downregulation of LAMP2 and upregulation of LC3-II/I and SQSTM1 demonstrated that autophagy was impaired in AP.The expression of ZKSCAN3 was upregulated in AP.Inhibition of ZKSCAN3 increased the expression of LAMP2 and decreased the expression of the inflammatory factors,LC3-II/I and SQSTM1.Furthermore,ALKBH5 was upregulated in AP.Knockdown of ALKBH5 downregulated ZKSCAN3 expression and restored decreased autophagic flux in AP.Notably,the bioinformatic analysis revealed 23 potential m6A modification sites on ZKSCAN3 mRNA.The m6A modification of ZKSCAN3 mRNA was significantly decreased in AP.Knockdown of ALKBH5 increased the modification of ZKSCAN3 mRNA,which confirmed that ALKBH5 upregulated ZKSCAN3 expression in a m6A-dependent manner.CONCLUSION ALKBH5 inhibits autophagic flux through m6A demethylation of ZKSCAN3 mRNA in AP,thereby aggravating the severity of the disease.
基金Supported by Project of Shanghai Science and Technology (No.20ZR1443600)。
文摘N6-methyladenosine(m6A)modification is a reversible process promoted by“writers”,inhibited by“erasers”,and processed by“readers”.During the last decade,increasing emphasis has been placed on the underlying roles of m6A modification owing to their great importance in biological significance.The abnormal regulation of m6A modification will lead to aberrant cellular behavior and various diseases.Recently,studies have demonstrated that m6A modification is closely associated with the genesis and progression of ocular surface diseases(OSDs).This review focus on the role of m6A modification and research progress in OSDs including fungal keratitis,herpes simplex keratitis,immunerelated keratoconjunctival diseases,pterygium,ocular chemical burns,and Graves’ophthalmopathy,which may provide new insights into and prospective applications for OSDs.
基金supported by the National Natural Science Foundation(82071036,82000973)the Natural Science Foundation of Hunan Province(2022JJ30821,2019JJ50967)the Special Project for the Construction of Innovative Provinces in Hunan Province(2023SK4030),China。
文摘Objective:Middle ear cholesteatoma is a non-tumorous condition that typically leads to hearing loss,bone destruction,and other severe complications.Despite surgery being the primary treatment,the recurrence rate remains high.Therefore,exploring the molecular mechanisms underlying cholesteatoma is crucial for discovering new therapeutic approaches.This study aims to explore the involvement of N6-methyladenosine(m^(6)A)methylation in long non-coding RNAs(lncRNAs)in the biological functions and related pathways of middle ear cholesteatoma.Methods:The m^(6)A modification patterns of lncRNA in middle ear cholesteatoma tissues(n=5)and normal post-auricular skin tissues(n=5)were analyzed using an lncRNA m^(6)A transcriptome microarray.Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway analyses were conducted to identify potential biological functions and signaling pathways involved in the pathogenesis of middle ear cholesteatoma.Methylated RNA immunoprecipitation(MeRIP)-PCR was used to validate the m^(6)A modifications in cholesteatoma and normal skin tissues.Results:Compared with normal skin tissues,1525 lncRNAs were differentially methylated in middle ear cholesteatoma tissues,with 1048 showing hypermethylation and 477 showing hypomethylation[fold change(FC)≥3 or<1/3,P<0.05].GO enrichment analysis indicated that hypermethylated lncRNAs were involved in protein phosphatase inhibitor activity,neuron-neuron synapse,and regulation ofα-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid(AMPA)receptor activity.Hypomethylated lncRNAs were associated with mRNA methyltransferase activity,secretory granule membrane,and mRNA methylation.KEGG analysis revealed that hypermethylated lncRNAs were mainly associated with 5 pathways:the Hedgehog signaling pathway,viral protein interaction with cytokines and cytokine receptors,mitogen-activated protein kinase(MAPK)signaling pathway,cytokine-cytokine receptor interaction,and adrenergic signaling in cardiomyocytes.Hypomethylated lncRNAs were mainly involved in 4 pathways:Renal cell carcinoma,tumor necrosis factor signaling pathway,transcriptional misregulation in cancer,and cytokine-cytokine receptor interaction.Additionally,MeRIP-PCR confirmed the changes in m^(6)A methylation levels in NR_033339,NR_122111,NR_130744,and NR_026800,consistent with microarray analysis.Real-time PCR also confirmed the significant upregulation of MAPK1 and NF-κB,key genes in the MAPK signaling pathway.Conclusion:This study reveals the m^(6)A modification patterns of lncRNAs in middle ear cholesteatoma,suggests a direction for further research into the role of lncRNA m^(6)A modification in the etiology of cholesteatoma.The findings provide potential therapeutic targets for the treatment of middle ear cholesteatoma.
基金Natural Science Foundation of Shandong Province,No.ZR2020MH207 and No.ZR2020MH251.
文摘BACKGROUND Through experimental research on the biological function of GATA6-AS1,it was confirmed that GATA6-AS1 can inhibit the proliferation,invasion,and migration of gastric cancer cells,suggesting that GATA6-AS1 plays a role as an anti-oncogene in the occurrence and development of gastric cancer.Further experi-ments confirmed that the overexpression of fat mass and obesity-associated protein(FTO)inhibited the expression of GATA6-AS1,thereby promoting the occurrence and development of gastric cancer.AIM To investigate the effects of GATA6-AS1 on the proliferation,invasion and migration of gastric cancer cells and its mechanism of action.METHODS We used bioinformatics methods to analyze the Cancer Genome Atlas(https://portal.gdc.cancer.gov/.The Cancer Genome Atlas)and download expression data for GATA6-AS1 in gastric cancer tissue and normal tissue.We also constructed a GATA6-AS1 lentivirus overexpression vector which was transfected into gastric cancer cells to investigate its effects on proliferation,migration and invasion,and thereby clarify the expression of GATA6-AS1 in gastric cancer and its biological role in the genesis and development of gastric cancer.Next,we used a database(http://starbase.sysu.edu.cn/starbase2/)to analysis GATA6-AS1 whether by m6A methylation modify regulation and predict the methyltransferases that may methylate GATA6-AS1.Furthermore,RNA immunoprecipitation experiments confirmed that GATA6-AS1 was able to bind to the m6A methylation modification enzyme.These data allowed us to clarify the ability of m6A methylase to influence the action of GATA6-AS1 and its role in the occurrence and development of gastric cancer.RESULTS Low expression levels of GATA6-AS1 were detected in gastric cancer.We also determined the effects of GATA6-AS1 overexpression on the biological function of gastric cancer cells.GATA6-AS1 had strong binding ability with the m6A demethylase FTO,which was expressed at high levels in gastric cancer and negatively correlated with the expression of GATA6-AS1.Following transfection with siRNA to knock down the expression of FTO,the expression levels of GATA6-AS1 were up-regulated.Finally,the proliferation,migration and invasion of gastric cancer cells were all inhibited following the knockdown of FTO expression.CONCLUSION During the occurrence and development of gastric cancer,the overexpression of FTO may inhibit the expression of GATA6-AS1,thus promoting the proliferation and metastasis of gastric cancer.
基金Supported by the Sub-Project of the National Key Research and Development Program,No.2021YFC2600263.
文摘BACKGROUND N6-methyladenosine(m6A)methylation modification exists in Epstein-Barr virus(EBV)primary infection,latency,and lytic reactivation.It also modifies EBV latent genes and lytic genes.EBV-associated gastric cancer(EBVaGC)is a distinctive molecular subtype of GC.We hypothesized EBV and m6A methylation regulators interact with each other in EBVaGC to differentiate it from other types of GC.AIM To investigate the mechanisms of m6A methylation regulators in EBVaGC to determine the differentiating factors from other types of GC.METHODS First,The Cancer Gene Atlas and Gene Expression Omnibus databases were used to analyze the expression pattern of m6A methylation regulators between EBVaGC and EBV-negative GC(EBVnGC).Second,we identified Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)functional enrichment of m6A-related differentially expressed genes.We quantified the relative abundance of immune cells and inflammatory factors in the tumor microenvironment(TME).Finally,cell counting kit-8 cell proliferation test,transwell test,and flow cytometry were used to verify the effect of insulin-like growth factor binding protein 1(IGFBP1)in EBVaGC cell lines.RESULTS m6A methylation regulators were involved in the occurrence and development of EBVaGC.Compared with EBVnGC,the expression levels of m6A methylation regulators Wilms tumor 1-associated protein,RNA binding motif protein 15B,CBL proto-oncogene like 1,leucine rich pentatricopeptide repeat containing,heterogeneous nuclear ribonucleoprotein A2B1,IGFBP1,and insulin-like growth factor 2 binding protein 1 were significantly downregulated in EBVaGC(P<0.05).The overall survival rate of EBVaGC patients with a lower expression level of IGFBP1 was significantly higher(P=0.046).GO and KEGG functional enrichment analyses showed that the immunity pathways were significantly activated and rich in immune cell infiltration in EBVaGC.Compared with EBVnGC,the infiltration of activated CD4+T cells,activated CD8+T cells,monocytes,activated dendritic cells,and plasmacytoid dendritic cells were significantly upregulated in EBVaGC(P<0.001).In EBVaGC,the expression level of proinflammatory factors interleukin(IL)-17,IL-21,and interferon-γ and immunosuppressive factor IL-10 were significantly increased(P<0.05).In vitro experiments demonstrated that the expression level of IGFBP1 was significantly lower in an EBVaGC cell line(SNU719)than in an EBVnGC cell line(AGS)(P<0.05).IGFBP1 overexpression significantly attenuated proliferation and migration and promoted the apoptosis levels in SNU719.Interfering IGFBP1 significantly promoted proliferation and migration and attenuated the apoptosis levels in AGS.CONCLUSION m6A regulators could remodel the TME of EBVaGC,which is classified as an immune-inflamed phenotype and referred to as a“hot”tumor.Among these regulators,we demonstrated that IGFBP1 affected proliferation,migration,and apoptosis.
基金This research was supported by grants from the National Natural Science Foundation of China(Grant Nos.81922052,81974435,and 81772999)Natural Science Foundation of Guangdong Province(Grant No.2019B151502011)the Guangzhou People’s Livelihood Science and Technology Project(Grant No.201903010006).
文摘Growing evidence supports that cancer progression is closely associated with the tumor microenvironment and immune evasion.Importantly,recent studies have revealed the crucial roles of epigenetic regulators in shaping the tumor microenvironment and restoring immune recognition.N^(6)-methyladenosine(m^(6)A)modification,the most prevalent epigenetic modification of mammalian mRNAs,has essential functions in regulating the processing and metabolism of its targeted RNAs,and therefore affects various biological processes including tumorigenesis and progression.Recent studies have demonstrated the critical functions and molecular mechanisms underlying abnormal m^(6)A modification in the regulation of tumor immunity.In this review,we summarize recent research progress in the potential roles of m^(6)A modification in tumor immunoregulation,with a special focus on the anti-tumor processes of immune cells and involvement in immune-associated molecules and pathways.Furthermore,we review current knowledge regarding the close correlation between m6A-related risk signatures and the tumor immune microenvironment landscape,and we discuss the prognostic value and therapeutic efficacy of m^(6)A regulators in a variety of cancer types.
基金Supported by the National Natural Science Foundation of China,No.82171039.
文摘BACKGROUND Cataracts remain a prime reason for visual disturbance and blindness all over the world,despite the capacity for successful surgical replacement with artificial lenses.Diabetic cataract(DC),a metabolic complication,usually occurs at an earlier age and progresses faster than age-related cataracts.Evidence has linked N6-methyladenosine(m6A)to DC progression.However,there exists a lack of understanding regarding RNA m6A modifications and the role of m6A in DC pathogenesis.AIM To elucidate the role played by altered m6A and differentially expressed mRNAs(DEmRNAs)in DC.METHODS Anterior lens capsules were collected from the control subjects and patients with DC.M6A epitranscriptomic microarray was performed to investigate the altered m6A modifications and determine the DEmRNAs.Through Gene Ontology and pathway enrichment(Kyoto Encyclopedia of Genes and Genomes)analyses,the potential role played by dysregulated m6A modification was predicted.Real-time polymerase chain reaction was further carried out to identify the dysregulated expression of RNA methyltransferases,demethylases,and readers.RESULTS Increased m6A abundance levels were found in the total mRNA of DC samples.Bioinformatics analysis predicted that ferroptosis pathways could be associated with m6A-modified mRNAs.The levels of five methylation-related genes-RBM15,WTAP,ALKBH5,FTO,and YTHDF1-were upregulated in DC samples.Upregulation of RBM15 expression was verified in SRA01/04 cells with high-glucose medium and in samples from DC patients.CONCLUSION M6a mRNA modifications may be involved in DC progression via the ferroptosis pathway,rendering novel insights into therapeutic strategies for DC.
基金supported in part by the National Natural Science Foundation of China(Grant No.31572401)to WZ
文摘Background: N6-Methyladenosine(m^6A), the most prevalent modification in mammalian m RNA, plays important roles in numerous biological processes. Several m^6A associated proteins such as methyltransferase like 3(METTL3),methyltransferase like 14(METTL14), α-ketoglutarate-dependent dioxygenase Alk B homolog 5(ALKBH5) and YTH domain containing 2(YTHDC2) are involved in the regulation of spermatogenesis and oogenesis. However, the role of the first detected m^6A demethylase, fat mass and obesity associate protein(FTO), in germ cells remains elusive.Elucidation of FTO roles in the regulation of germ cell fate will provide novel insights into the mammalian reproduction.Methods: Mouse GC-1 spg cells were treated with the ester form of meclofenamic acid(MA2) to inhibit the demethylase activity of FTO. The cellular m^6A and m^6Amlevel were analyzed through high performance liquid chromatography combined with tandem mass spectrometry(HPLC/MS-MS). The cell apoptosis was detected via TUNEL and flow cytometry. The cell proliferation was detected through Ed U and western blot. The m RNA level of core cyclin dependent kinases(CDKs) was quantified via q-PCR. RNA decay assay were performed to detect RNA stability. Dual fluorescence assay was conducted to study whether MA2 affects the expression of CDK2 dependent on the m^6A modification at 3’UTR.Results: MA2 significantly increased the cellular m^6A level and down-regulated the expression of CDK1, CDK2, CDK6 and Cd C25 a, resulting in arrest of G1/S transition and decrease of cell proliferation. MA2 downregulated CDK2 m RNA stability. Additionally, mutation of the predicted m^6A sites in the Cdk2–3’UTR could mitigated the degradation of CDK2 m RNA after MA2 treatment.Conclusion: MA2 affected CDKs expression through the m^6A-dependent m RNA degradation pathway, and thus repressed spermatogonial proliferation.
基金the National Natural Science Foundation of China,No.81772001the National Clinical Key Subject of China,No.41732113.
文摘BACKGROUND Severe acute pancreatitis(SAP)is a deadly inflammatory disease with complex pathogenesis and lack of effective therapeutic options.N6-methyladenosine(m6A)modification of circRNAs plays important roles in physiological and pathological processes.However,the roles of m6A circRNA in the pathological process of SAP remains unknown.AIM To identify transcriptome-wide map of m6A circRNAs and to determine their biological significance and potential mechanisms in SAP.METHODS The SAP in C57BL/6 mice was induced using 4%sodium taurocholate salt.The transcriptome-wide map of m6A circRNAs was identified by m6A-modified RNA immunoprecipitation sequencing.The biological significance of circRNAs with differentially expressed m6A peaks was evaluated through gene ontology and Kyoto Encyclopedia of Genes and Genomes analysis.The underlying mechanism of m6A circRNAs in SAP was analyzed by constructing of m6A circRNAmicroRNA networks.The expression of demethylases was determined by quantitative polymerase chain reaction and western blot to deduce the possible mechanism of reversible m6A process in SAP.RESULTS Fifty-seven circRNAs with differentially expressed m6A peaks were identified by m6A-modified RNA immunoprecipitation sequencing,of which 32 were upregulated and 25 downregulated.Functional analysis of these m6A circRNAs in SAP found some important pathways involved in the pathogenesis of SAP,such as regulation of autophagy and protein digestion.In m6A circRNA–miRNA networks,several important miRNAs participated in the occurrence and progression of SAP were found to bind to these m6A circRNAs,such as miR-24-3p,miR-26a,miR-92b,miR-216b,miR-324-5p and miR-762.Notably,the total m6A level of circRNAs was reduced,while the demethylase alkylation repair homolog 5 was upregulated in SAP.CONCLUSION m6A modification of circRNAs may be involved in the pathogenesis of SAP.Our findings may provide novel insights to explore the possible pathogenetic mechanism of SAP and seek new potential therapeutic targets for SAP.
基金funded by Notingham University and the Neuroscience Support Group Charity,UK(to HMK)supported by a CONACYT PhD scholarshipMD?was supported by the Postdoctoral Research Fellowship Program of TUBITAK。
文摘The study of modified RNA known as epitranscriptomics has become increasingly relevant in our understanding of disease-modifying mechanisms.Methylation of N6 adenosine(m^(6)A)and C5 cytosine(m^(5)C)bases occur on mRNAs,tRNA,mt-tRNA,and rRNA species as well as non-coding RNAs.With emerging knowledge of RNA binding proteins that act as writer,reader,and eraser effector proteins,comes a new understanding of physiological processes controlled by these systems.Such processes when spatiotemporally disrupted within cellular nanodomains in highly specialized tissues such as the brain,give rise to different forms of disease.In this review,we discuss accumulating evidence that changes in the m^(6)A and m^(5)C methylation systems contribute to neurocognitive disorders.Early studies first identified mutations within FMR1 to cause intellectual disability Fragile X syndromes several years before FMR1 was identified as an m^(6)A RNA reader protein.Subsequently,familial mutations within the m^(6)A writer gene METTL5,m^(5)C writer genes NSUN2,NSUN3,NSUN5,and NSUN6,as well as THOC2 and THOC6 that form a protein complex with the m^(5)C reader protein ALYREF,were recognized to cause intellectual development disorders.Similarly,differences in expression of the m^(5)C writer and reader effector proteins,NSUN6,NSUN7,and ALYREF in brain tissue are indicated in individuals with Alzheimer's disease,individuals with a high neuropathological load or have suffered traumatic brain injury.Likewise,an abundance of m^(6)A reader and anti-reader proteins are reported to change across brain regions in Lewy bodies diseases,Alzheimer's disease,and individuals with high cognitive reserve.m^(6)A-modified RNAs are also reported significantly more abundant in dementia with Lewy bodies brain tissue but significantly reduced in Parkinson's disease tissue,whilst modified RNAs are misplaced within diseased cells,particularly where synapses are located.In parahippocampal brain tissue,m^(6)A modification is enriched in transcripts associated with psychiatric disorders including conditions with clear cognitive deficits.These findings indicate a diverse set of molecular mechanisms are influenced by RNA methylation systems that can cause neuronal and synaptic dysfunction underlying neurocognitive disorders.Targeting these RNA modification systems brings new prospects for neural regenerative therapies.
基金supported by the National Natural Science Foundation of China[82070473,82170480,82030102]Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences[2021-I2M-1-010].
文摘Objective N6-methyladenosine(m^(6)A)is a common epigenetic modification in eukaryotes.In this study,we explore the potential impact of m^(6)A-associated single nucleotide polymorphisms(m^(6)A-SNPs)on heart failure(HF).Methods Data from genome-wide association studies(GWAS)investigating HF in humans and from m^(6)A-SNPs datasets were used to identify HF-associated m^(6)A-SNPs.Their functions were explored using expression quantitative trait locus(eQTL),gene expression,and gene enrichment analyses.Mediation protein quantitative trait locus(pQTL)-Mendelian randomization(MR)was used to investigate the potential mechanism between critical protein levels and risk factors for HF.Results We screened 44 HF-associated m^(6)A-SNPs,including 10 m^(6)A-SNPs that showed eQTL signals and differential expressions in HF.The SNP rs1801270 in CDKN1A showed the strongest association with HF(P=7.75×10^(−6)).Additionally,MR verified the genetic association between the CDKN1A protein and HF,as well as the mediating effect of blood pressure(BP)in this pathway.Higher circulating level of CDKN1A was associated with a lower risk of HF(odds ratio[OR]=0.82,95%confidence interval[CI]:0.69 to 0.99).The proportions of hypertension,systolic BP,and diastolic BP were 48.10%,28.94%,and 18.02%,respectively.Associations of PDIA6(P=1.30×10^(−2))and SMAD3(P=4.80×10^(−2))with HF were also detected.Conclusion Multiple HF-related m^(6)A-SNPs were identified in this study.Genetic associations of CDKN1A and other proteins with HF and its risk factors were demonstrated,providing new ideas for further exploration of the molecular mechanisms of HF.
基金supported by funds from the National Natural Science Foundation of China (Grant No.U21A20249)China Postdoctoral Science Foundation (2022 M712794)。
文摘Background Intramuscular fat(IMF)content is a critical indicator of pork quality,and abnormal IMF is also relevant to human disease as well as aging.Although N6-methyladenosine(m^(6)A)RNA modification was recently found to regulate adipogenesis in porcine intramuscular fat,however,the underlying molecular mechanisms was still unclear.Results In this work,we collected 20 longissimus dorsi muscle samples with high(average 3.95%)or low IMF content(average 1.22%)from a unique heterogenous swine population for m^(6)A sequencing(m^(6)A-seq).We discovered 70genes show both differential RNA expression and m^(6)A modification from high and low IMF group,including ADIPOQ and SFRP1,two hub genes inferred through gene co-expression analysis.Particularly,we observed ADIPOQ,which contains three m^(6)A modification sites within 3’untranslated and protein coding region,could promote porcine intramuscular preadipocyte differentiation in an m^(6)A-dependent manner.Furthermore,we found the YT521-B homology domain family protein 1(YTHDF1)could target and promote ADIPOQ mRNA translation.Conclusions Our study provided a comprehensive profiling of m^(6)A methylation in porcine longissimus dorsi muscle and characterized the involvement of m^(6)A epigenetic modification in the regulation of ADIPOQ mRNA on IMF deposition through an m^(6)A-YTHDF1-dependent manner.