γ-Aminobutyric acid(GABA),plays a key role in all stages of life,also is considered the main inhibitory neurotransmitter.GABA activates two kind of membrane receptors known as GABAA and GABAB,the first one is respo...γ-Aminobutyric acid(GABA),plays a key role in all stages of life,also is considered the main inhibitory neurotransmitter.GABA activates two kind of membrane receptors known as GABAA and GABAB,the first one is responsible to render tonic inhibition by pentameric receptors containing α4-6,β3,δ,or ρ1-3 subunits,they are located at perisynaptic and/or in extrasynaptic regions.The biophysical properties of GABAA tonic inhibition have been related with cellular protection against excitotoxic injury and cell death in presence of excessive excitation.On this basis,GABAA tonic inhibition has been proposed as a potential target for therapeutic intervention of Huntington's disease.Huntington's disease is a neurodegenerative disorder caused by a genetic mutation of the huntingtin protein.For experimental studies of Huntington's disease mouse models have been developed,such as R6/1,R6/2,Hdh Q92,Hdh Q150,as well as YAC128.In all of them,some key experimental reports are focused on neostriatum.The neostriatum is considered as the most important connection between cerebral cortex and basal ganglia structures,its cytology display two pathways called direct and indirect constituted by medium sized spiny neurons expressing dopamine D1 and D2 receptors respectively,they display strong expression of many types of GABAA receptors,including tonic subunits.The studies about of GABAA tonic subunits and Huntington's disease into the neostriatum are rising in recent years,suggesting interesting changes in their expression and localization which can be used as a strategy to delay the cellular damage caused by the imbalance between excitation and inhibition,a hallmark of Huntington's disease.展开更多
The cross-section for the 93Nb(n, 2n)92gNb reaction has been measured at the neutron energy of 14.6 MeV using neutron activation and accelerator mass spectrometry (AMS) determination of the long-lived product nucl...The cross-section for the 93Nb(n, 2n)92gNb reaction has been measured at the neutron energy of 14.6 MeV using neutron activation and accelerator mass spectrometry (AMS) determination of the long-lived product nuclide 92gNb. The neutron energy was generated from the D+T neutron source at the China Institute of Atomic Energy (CIAE). The neutron flux was monitored by measuring the activity of 92mNb produced in the competing reaction channel of 93Nb(n, 2n)92mNb. At the neutron energy of 14.6 MeV, the 93Nb(n, 2n)92gNb reaction cross-section of (736±220) mb was obtained for the first time.展开更多
基金the programs for the postdoctoral fellowships-Chilean CONICYT-FONDECYT#3140218,Mexican CONACYT#164978 and DID-UACh S-2015-81Sistema Nacional de Investigadores#58512 to Abraham Rosas-Arellano+2 种基金supported by USACH PhD fellowshipsupported with a PhD fellowship from CONACYT(#299627)FONDECYT grants 1151206 and 1110571 to Maite A.Castro
文摘γ-Aminobutyric acid(GABA),plays a key role in all stages of life,also is considered the main inhibitory neurotransmitter.GABA activates two kind of membrane receptors known as GABAA and GABAB,the first one is responsible to render tonic inhibition by pentameric receptors containing α4-6,β3,δ,or ρ1-3 subunits,they are located at perisynaptic and/or in extrasynaptic regions.The biophysical properties of GABAA tonic inhibition have been related with cellular protection against excitotoxic injury and cell death in presence of excessive excitation.On this basis,GABAA tonic inhibition has been proposed as a potential target for therapeutic intervention of Huntington's disease.Huntington's disease is a neurodegenerative disorder caused by a genetic mutation of the huntingtin protein.For experimental studies of Huntington's disease mouse models have been developed,such as R6/1,R6/2,Hdh Q92,Hdh Q150,as well as YAC128.In all of them,some key experimental reports are focused on neostriatum.The neostriatum is considered as the most important connection between cerebral cortex and basal ganglia structures,its cytology display two pathways called direct and indirect constituted by medium sized spiny neurons expressing dopamine D1 and D2 receptors respectively,they display strong expression of many types of GABAA receptors,including tonic subunits.The studies about of GABAA tonic subunits and Huntington's disease into the neostriatum are rising in recent years,suggesting interesting changes in their expression and localization which can be used as a strategy to delay the cellular damage caused by the imbalance between excitation and inhibition,a hallmark of Huntington's disease.
基金Supported by National Natural Science Foundation of China(10975195)
文摘The cross-section for the 93Nb(n, 2n)92gNb reaction has been measured at the neutron energy of 14.6 MeV using neutron activation and accelerator mass spectrometry (AMS) determination of the long-lived product nuclide 92gNb. The neutron energy was generated from the D+T neutron source at the China Institute of Atomic Energy (CIAE). The neutron flux was monitored by measuring the activity of 92mNb produced in the competing reaction channel of 93Nb(n, 2n)92mNb. At the neutron energy of 14.6 MeV, the 93Nb(n, 2n)92gNb reaction cross-section of (736±220) mb was obtained for the first time.