Nicotinamide adenine dinucleotide (NADH/NAD+) is involved in important biochemical reactions in human metabolism, including participation in energy production by mitochondria. The changes in fluorescence intensity as ...Nicotinamide adenine dinucleotide (NADH/NAD+) is involved in important biochemical reactions in human metabolism, including participation in energy production by mitochondria. The changes in fluorescence intensity as a function of time in response to blocking and releasing of blood flow in a forearm are used as a measure of oxygen transport with blood to the tissue, which directly correlates with the skin microcirculation status. In this paper, a non-invasive dynamic monitoring system based on blood flow-mediated skin fluorescence (FMSF) technology is developed to monitor the NADH fluorescence intensity of skin tissue during the process of blocking reactive hyperemia. Simultaneously, laser speckle contrast imaging (LSCI) and laser Doppler flowmetry (LDF) were used to observe blood flow, blood oxygen saturation (SOt2) and relative amount of hemoglobin (rHb) during the measurement process, which helped to explore NADH dynamics relevant physiological changes. A variety of parameters have been derived to describe NADH fluorescence curve based on the FMSF device. The experimental results are conducive to understanding the NADH measurement and the physiological processes related to it, which help FMSF to be a great avenue for in vivo physiological, clinical and pharmacological research on mitochondrial metabolism.展开更多
以动物园为代表的圈养环境是开展野生动物迁地保护、繁育、科普宣传的重要场地,亦为开展科学研究等提供了宝贵资源。而圈养环境中的国家一级重点保护动物豹(Pantera pardus)的遗传资源则为了解其野生种群提供了窗口。本研究以郑州市动...以动物园为代表的圈养环境是开展野生动物迁地保护、繁育、科普宣传的重要场地,亦为开展科学研究等提供了宝贵资源。而圈养环境中的国家一级重点保护动物豹(Pantera pardus)的遗传资源则为了解其野生种群提供了窗口。本研究以郑州市动物园圈养的1只雌性豹为对象,通过提取该个体的基因组DNA并进行PCR扩增与测序,利用所获得的NADH5基因片段探究该个体属何豹亚种。经与NCBI数据库比对以及系统发生分析,本研究显示该个体属于豹华北亚种(P. p. fontanierii)。基于本研究,建议开展国内圈养豹遗传资源调查,以便系统地开展圈养豹的保护、繁育工作。展开更多
Background:Aldo-keto oxidoreductase(AKR)inhibitors could reverse the resistance of several cancer cells to cis-platin,but their role in resistance remains unclear.Methods:We verified the difference of AKR1Cs expressio...Background:Aldo-keto oxidoreductase(AKR)inhibitors could reverse the resistance of several cancer cells to cis-platin,but their role in resistance remains unclear.Methods:We verified the difference of AKR1Cs expression by Western blot,RNA sequencing and qRT-PCR.The differences of AKR1Cs expression were analyzed and inferred.Use Assay of NADH and NAD^(+)content to verify the inference.The Docking experience was used to verify the affinity between MPA,MCFLA,MLS and AKR1C3.Results:Our RNA-seq results showed de novo NAD biosynthesis-related genes and NAD(P)H-dependent oxidoreductases were significantly upregulated in cis-platin-resistant HepG2 hepatic cancer cells(HepG2-RC cells)compared with HepG2 cells.At least 63 NAD(P)H-dependent reductase/oxidases were upregulated in HepG2-RC cells at least twofold.Knockdown of AKR1Cs could increase cis-platin sensitivity in HepG2-RC cells about two-fold.Interestingly,the AKR1C inhibitor meclofenamic acid could increase the cis-platin sensitivity of HepG2-RC cells about eight-fold,indicating that the knockdown of AKR1Cs only partially reversed the resistance.Meanwhile,the amount of total NAD and the ratio of NADH/NAD^(+)were increased in HepG2-RC cells compared with HepG2 cells.The ratio of NADH/NAD^(+)in HepG2-RC cells was almost seven-fold higher than in HepG2 or HL-7702 cells.Increased NADH expression could be explained as a directly operating antioxidant to scavenge cis-platin-induced radicals.Conclusion:We report here that NADH,which is produced by NAD(P)Hdependent oxidoreductases,plays a key role in the AKR-associated cis-platin resistance of HepG2 hepatic cancer cells.展开更多
Nicotinamide adenine dinucleotide(NAD+)plays an essential role in cellular metabolism,mitochondrial homeostasis,inflammation,and senescence.However,the role of NAD+-regulated genes,including coding and long non-coding...Nicotinamide adenine dinucleotide(NAD+)plays an essential role in cellular metabolism,mitochondrial homeostasis,inflammation,and senescence.However,the role of NAD+-regulated genes,including coding and long non-coding genes in cancer development is poorly understood.We constructed a prediction model based on the expression level of NAD+metabolism-related genes(NMRGs).Furthermore,we validated the expression of NMRGs in gastric cancer(GC)tissues and cell lines;additionally,β-nicotinamide mononucleotide(NMN),a precursor of NAD+,was used to treat the GC cell lines to analyze its effects on the expression level of NMRGs lncRNAs and cellular proliferation,cell cycle,apoptosis,and senescence-associated secretory phenotype(SASP).A total of 13 NMRGs-related lncRNAs were selected to construct prognostic risk signatures,and patients with high-risk scores had a poor prognosis.Some immune checkpoint genes were upregulated in the high-risk group.In addition,cell cycle,epigenetics,and senescence were significantly downregulated in the high-risk group.Notably,we found that the levels of immune cell infiltration,including CD8 T cells,CD4 naïve T cells,CD4 memory-activated T cells,B memory cells,and naïve B cells,were significantly associated with risk scores.Furthermore,the treatment of NMN showed increased proliferation of AGS and MKN45 cells.In addition,the expression of SASP factors(IL6,IL8,IL10,TGF-β,and TNF-α)was significantly decreased after NMN treatment.We conclude that the lncRNAs associated with NAD+metabolism can potentially be used as biomarkers for predicting clinical outcomes of GC patients.展开更多
文摘Nicotinamide adenine dinucleotide (NADH/NAD+) is involved in important biochemical reactions in human metabolism, including participation in energy production by mitochondria. The changes in fluorescence intensity as a function of time in response to blocking and releasing of blood flow in a forearm are used as a measure of oxygen transport with blood to the tissue, which directly correlates with the skin microcirculation status. In this paper, a non-invasive dynamic monitoring system based on blood flow-mediated skin fluorescence (FMSF) technology is developed to monitor the NADH fluorescence intensity of skin tissue during the process of blocking reactive hyperemia. Simultaneously, laser speckle contrast imaging (LSCI) and laser Doppler flowmetry (LDF) were used to observe blood flow, blood oxygen saturation (SOt2) and relative amount of hemoglobin (rHb) during the measurement process, which helped to explore NADH dynamics relevant physiological changes. A variety of parameters have been derived to describe NADH fluorescence curve based on the FMSF device. The experimental results are conducive to understanding the NADH measurement and the physiological processes related to it, which help FMSF to be a great avenue for in vivo physiological, clinical and pharmacological research on mitochondrial metabolism.
文摘以动物园为代表的圈养环境是开展野生动物迁地保护、繁育、科普宣传的重要场地,亦为开展科学研究等提供了宝贵资源。而圈养环境中的国家一级重点保护动物豹(Pantera pardus)的遗传资源则为了解其野生种群提供了窗口。本研究以郑州市动物园圈养的1只雌性豹为对象,通过提取该个体的基因组DNA并进行PCR扩增与测序,利用所获得的NADH5基因片段探究该个体属何豹亚种。经与NCBI数据库比对以及系统发生分析,本研究显示该个体属于豹华北亚种(P. p. fontanierii)。基于本研究,建议开展国内圈养豹遗传资源调查,以便系统地开展圈养豹的保护、繁育工作。
基金supported by the Science and Technology Development Plan Project of Jilin Province,China[20200708101YY]The Foundation of Jilin Province Science and Technology Department[20200801062GH].
文摘Background:Aldo-keto oxidoreductase(AKR)inhibitors could reverse the resistance of several cancer cells to cis-platin,but their role in resistance remains unclear.Methods:We verified the difference of AKR1Cs expression by Western blot,RNA sequencing and qRT-PCR.The differences of AKR1Cs expression were analyzed and inferred.Use Assay of NADH and NAD^(+)content to verify the inference.The Docking experience was used to verify the affinity between MPA,MCFLA,MLS and AKR1C3.Results:Our RNA-seq results showed de novo NAD biosynthesis-related genes and NAD(P)H-dependent oxidoreductases were significantly upregulated in cis-platin-resistant HepG2 hepatic cancer cells(HepG2-RC cells)compared with HepG2 cells.At least 63 NAD(P)H-dependent reductase/oxidases were upregulated in HepG2-RC cells at least twofold.Knockdown of AKR1Cs could increase cis-platin sensitivity in HepG2-RC cells about two-fold.Interestingly,the AKR1C inhibitor meclofenamic acid could increase the cis-platin sensitivity of HepG2-RC cells about eight-fold,indicating that the knockdown of AKR1Cs only partially reversed the resistance.Meanwhile,the amount of total NAD and the ratio of NADH/NAD^(+)were increased in HepG2-RC cells compared with HepG2 cells.The ratio of NADH/NAD^(+)in HepG2-RC cells was almost seven-fold higher than in HepG2 or HL-7702 cells.Increased NADH expression could be explained as a directly operating antioxidant to scavenge cis-platin-induced radicals.Conclusion:We report here that NADH,which is produced by NAD(P)Hdependent oxidoreductases,plays a key role in the AKR-associated cis-platin resistance of HepG2 hepatic cancer cells.
基金supported by Zhengzhou Major Collaborative Innovation Project(No.18XTZX12003)Key Projects of Discipline Construction in Zhengzhou University(No.XKZDJC202001)+1 种基金National Key Research and Development Program in China(No.2020YFC2006100)Medical Service Capacity Improvement Project of Henan Province in China(Grant Number Yu Wei Medicine[2017]No.66).
文摘Nicotinamide adenine dinucleotide(NAD+)plays an essential role in cellular metabolism,mitochondrial homeostasis,inflammation,and senescence.However,the role of NAD+-regulated genes,including coding and long non-coding genes in cancer development is poorly understood.We constructed a prediction model based on the expression level of NAD+metabolism-related genes(NMRGs).Furthermore,we validated the expression of NMRGs in gastric cancer(GC)tissues and cell lines;additionally,β-nicotinamide mononucleotide(NMN),a precursor of NAD+,was used to treat the GC cell lines to analyze its effects on the expression level of NMRGs lncRNAs and cellular proliferation,cell cycle,apoptosis,and senescence-associated secretory phenotype(SASP).A total of 13 NMRGs-related lncRNAs were selected to construct prognostic risk signatures,and patients with high-risk scores had a poor prognosis.Some immune checkpoint genes were upregulated in the high-risk group.In addition,cell cycle,epigenetics,and senescence were significantly downregulated in the high-risk group.Notably,we found that the levels of immune cell infiltration,including CD8 T cells,CD4 naïve T cells,CD4 memory-activated T cells,B memory cells,and naïve B cells,were significantly associated with risk scores.Furthermore,the treatment of NMN showed increased proliferation of AGS and MKN45 cells.In addition,the expression of SASP factors(IL6,IL8,IL10,TGF-β,and TNF-α)was significantly decreased after NMN treatment.We conclude that the lncRNAs associated with NAD+metabolism can potentially be used as biomarkers for predicting clinical outcomes of GC patients.