Ni^(2+)/Cu^(2+)/SO_(4)^(2-)/polyvinyl alcohol precursor fibers with uniform diameters were prepared through electrospinning.Nickel-based composite nanoalloys containing Ni,Cu,and S were prepared through heat treatment...Ni^(2+)/Cu^(2+)/SO_(4)^(2-)/polyvinyl alcohol precursor fibers with uniform diameters were prepared through electrospinning.Nickel-based composite nanoalloys containing Ni,Cu,and S were prepared through heat treatment in an Ar atmosphere.The experimental results show that the main components of the prepared nanoalloys are NiCu,Ni_(3)S_(2),Ni,and C.The nanoalloys exhibit fine grain sizes about 200-500 nm,which can increase with increasing heat treatment temperature.Electrochemical test results show that the nickel sulfidemodified NiCu nanoalloy composites exhibit excellent oxygen evolution reaction properties,and the oxygen evolution reaction properties gradually improve with the increasing heat treatment temperature.The sample prepared at 1 000℃ for 40 min show a low overpotential of 423 mV and a small Tafel slope of 134 mV·dec^(-1) at a current density of 10 mA·cm^(-2).展开更多
Light-metalloid-atom-doped Pd interstitial nanoalloy is promising candidate for electrocatalysis because of the favorable electronic effect.Herein,an innovative method was developed to synthesize C-doped Pd interstiti...Light-metalloid-atom-doped Pd interstitial nanoalloy is promising candidate for electrocatalysis because of the favorable electronic effect.Herein,an innovative method was developed to synthesize C-doped Pd interstitial nanoalloy using palladium acetate both as metal precursor and C dopant.Elaborate characterizations demonstrated that C atoms were successfully doped into the Pd lattice via self-catalytic decomposition of acetate ions.The as-synthesized C-doped Pd catalysts showed excellent activity and durable stability for formic acid electrooxidation.The mass activity and specific activity at 0.6 V of C-doped Pd were approximately 2.59 A/mg and 3.50 mA cm^(-2),i.e.,2.4 and 2.6 times of Pd,respectively.DFT calculations revealed that interstitial doping with C atoms induced differentiation of Pd sites.The strong noncovalent interaction between the Pd sites and the key intermediates endowed Pd with high-selectivity to direct routes and enhanced CO tolerance.This work presents a sites-differentiation strategy for metallic catalysts to improve the electrocatalysis.展开更多
Preciously tuning the surface composition of noble metal nanoparticles with the particle size of only 2 nm or less by alloying with other metals represents a powerful strategy to boost their electrocatalytic selectivi...Preciously tuning the surface composition of noble metal nanoparticles with the particle size of only 2 nm or less by alloying with other metals represents a powerful strategy to boost their electrocatalytic selectivity.However,the synthesis of ultrafine nanoalloys and tuning their surface composition remain challenging.In this report,ultrafine CuPd nanoalloys with the particle size of ca.2 nm are synthesized based on the galvanic replacement reaction between presynthesized Cu nanoparticles and Pd2+precursors,and the tuning of their surface compositions is also achieved by changing the atom ratios of Cu/Pd.For the electrocatalytic reduction of CO2,Cu5Pd5 nanoalloys show the CO Faradaic efficiency(FE)of 88%at−0.87 V,and the corresponding mass activity reaches 56 A/g that is much higher than those of Cu8Pd2 nanoalloys,Cu3Pd7 nanoalloys and most of previously reported catalysts.Density functional theory uncovers that with the increase of Pd on the surface of the ultrafine CuPd nanoalloys,the adsorbed energy of both of intermediate COOH*and CO*to the Pd sites is strengthened.The Cu5Pd5 nanoalloys with the optimal surface composition better balance the adsorption of COOH*and desorption of CO*,achieving the highest selectivity and activity.The difficult liberation of absorbed CO*on the surface of Cu3Pd7 nanoalloys provides carbon source to favor the production of ethylene,endowing the Cu3Pd7 nanoalloys with the highest selectivity for ethylene among these ultrafine CuPd nanoalloys.展开更多
The electrochemical performance of a battery is considered to be primarily dependent on the electrode material. However, engineering and optimization of electrodes also play a crucial role, and the same electrode mate...The electrochemical performance of a battery is considered to be primarily dependent on the electrode material. However, engineering and optimization of electrodes also play a crucial role, and the same electrode material can be designed to offer significantly improved batteries. In this work, Si–Fe–Mn nanomaterial alloy(Si/alloy) and graphite composite electrodes were densified at different calendering conditions of 3, 5, and 8 tons, and its influence on electrode porosity, electrolyte wettability, and long-term cycling was investigated. The active material loading was maintained very high(~2 mg cm^(-2)) to implement electrode engineering close to commercial loading scales. The densification was optimized to balance between the electrode thickness and wettability to enable the best electrochemical properties of the Si/alloy anodes.In this case, engineering and optimizing the Si/alloy composite electrodes to 3 ton calendering(electrode densification from 0.39 to 0.48 g cm^(-3)) showed enhanced cycling stability with a high capacity retention of ~100% over 100 cycles.展开更多
Catalytic conversion of CO_(2) to high-value products is a crucial method to achieve targets of carbon dioxide emissions peak and carbon neutralization.However,realizing a controllable product distribution in a single...Catalytic conversion of CO_(2) to high-value products is a crucial method to achieve targets of carbon dioxide emissions peak and carbon neutralization.However,realizing a controllable product distribution in a single CO_(2) hydrogenation process is of great challenge.Herein,we prepared the CuFe nanoalloy catalyst that directly transforms CO_(2) to alkanes using physical sputtering method in mild condition.The characteristic results show that the proximity between Cu and Fe is the crucial factor to tunable products among the different catalysts.The formation of unique coordination of FeCu4 nanoalloys from high-energy sputtering process provides close interaction between Cu and Fe,which is favorable to formation of low carbon paraffin,however,a distant proximity and weak interaction will increase the selectivity of olefins and alcohols.This work provides a general strategy for tuning target chemicals and enriches the viewpoints in CO_(2) hydrogenation.展开更多
The classical molecular dynamics simulations in canonical NVT ensemble conditions are used to investigate the melting transition in different heating rates of Pt-Ag-Au ternary nanoalloys.In order to obtain the initial...The classical molecular dynamics simulations in canonical NVT ensemble conditions are used to investigate the melting transition in different heating rates of Pt-Ag-Au ternary nanoalloys.In order to obtain the initial configurations used in the molecular dynamics simulations,optimizing the chemical ordering of Pt_(13)AgnAu_(42−n)(n=0-42)ternary nanoalloys was performed using the Basin-Hopping algorithm which would not allow changes in the icosahedron structure.The Gupta many-body potential was used to model interatomic interactions in both molecular dynamics simulations and optimization simulations.The melting transitions of selected Pt-Ag-Au nanoalloys were explored using caloric curves and Lindemann parameters.There have been two identified types of melting mechanisms,one includes sudden jump behavior in the caloric curve and the other is an isomerization while melting transition.The temperature range in which the isomerization takes place depends on the heating rate value.展开更多
In this study,truncated octahedron(TO)structure is selected for further analysis and we focus on 38-atom Pd-Pt-Ag trimetallic nanoalloys.The best chemical ordering structures of PdnAg32-nPt6 trimetallic nanoalloys are...In this study,truncated octahedron(TO)structure is selected for further analysis and we focus on 38-atom Pd-Pt-Ag trimetallic nanoalloys.The best chemical ordering structures of PdnAg32-nPt6 trimetallic nanoalloys are obtained at Gupta level.The structures with the lowest energy at Gupta level are then re-optimized by density functional theory(DFT)relaxations and DFT results confirm the Gupta level calculations with small shifts on bond lengths indicating TO structure is favorable for 38-atom of PdnAg32-nPt6 trimetallic nanoalloys.The DFT excess energy analysis shows that Pd8Ag24Pt6 composition has the lowest excess energy value in common with excess energy analysis at Gupta level.In Pd8Ag24Pt6 composition,eight Pd atoms are central sites of 8(111)hexagonal facets of TO,24 Ag atoms locate on surface,and 6 Pt atoms locate at the core of the structure.It is also obtained that all of the compositions except Pd18Ag14Pt6 and Pd20Ag12Pt6 exhibit a octahedral Pt core.Besides,it is observed that there is a clear tendency for Ag atoms to segregate to the surface and also Pt atoms prefer to locate at core due to order parameter(R)variations.展开更多
Precursor (Metal-organic decomposition (MOD)) inks are used to fabricate 2D and 3D printed conductive structures directly onto a substrate. By formulating a nanoalloy structure containing multiple metals, the opportun...Precursor (Metal-organic decomposition (MOD)) inks are used to fabricate 2D and 3D printed conductive structures directly onto a substrate. By formulating a nanoalloy structure containing multiple metals, the opportunity to modify chemical and physical properties exists. In this paper, a copper-nickel bimetallic nanoalloy film was fabricated by mixing copper and nickel precursor inks and sintering them in vacuum. The individual elemental inks were formulated and characterized using SEM, EDS, and XRD. During thermal processing, elemental copper forms first and is followed by the formation of bimetallic copper-nickel alloy. The encapsulation of the underlying copper by the nickel-rich alloy provides excellent oxidation resistance. No change in film resistance was observed after the film was exposed to an oxygen plasma. Nanoalloy films printed using reactive metallic inks have a variety of important applications involving local control of alloy composition. Examples include facile formation of layered nanostructures, and electrical conductivity with oxidative stability.展开更多
Escherichia coli,is a pathogenic bacterium that causes serious infections,whose therapeutic treatment is threatened by the emergence of multiple resistance to conventional antibiotics.In recent years,metal nanoparticl...Escherichia coli,is a pathogenic bacterium that causes serious infections,whose therapeutic treatment is threatened by the emergence of multiple resistance to conventional antibiotics.In recent years,metal nanoparticles(NPs)have been studied for their antimicrobial capacity and their possible applications as an alternative to antibiotics against different pathogens.NPs also vary in synthesis techniques;either by chemical,physical and biological methods.The objective of this work was to study the possible antimicrobial capacity of Cu-Ni nanoalloys obtained by a method called citrate-gel.The antimicrobial capacity of the NPs mentioned above was evaluated in vitro by the agar diffusion method.Most of the NPs evaluated showed antibacterial activity against the strain of E.coli studied.When combining chemical and biological NP,synergistic effects are observed with an increase in antibacterial activity in some cases.We can conclude that NPs derived from chemical and biological synthesis could be used as antimicrobials against E.coli and when these are combined,antibacterial effects increase.In the future,these applications of nanomaterials could be used as an alternative to the use of antibiotics against infections that have limited treatments.展开更多
The realization of high‐efficiency,reversible,stable,and safe Li‐O2 batteries is severely hindered by the large overpotential and side reactions,especially at high rate conditions.Therefore,rational design of cathod...The realization of high‐efficiency,reversible,stable,and safe Li‐O2 batteries is severely hindered by the large overpotential and side reactions,especially at high rate conditions.Therefore,rational design of cathode catalysts with high activity and stability is crucial to overcome the terrible issues at high current density.Herein,we report a surface engineering strategy to adjust the surface electron structure of boron(B)‐doped PtNi nanoalloy on carbon nanotubes(PtNiB@CNTs)as an efficient bifunctional cathodic catalyst for high‐rate and long‐life Li‐O2 batteries.Notably,the Li‐O2 batteries assembled with as‐prepared PtNiB@CNT catalyst exhibit ultrahigh discharge capacity of 20510 mA·h/g and extremely low overpotential of 0.48 V at a high current density of 1000 mA/g,both of which outperform the most reported Pt‐based catalysts recently.Meanwhile,our Li‐O2 batteries offer excellent rate capability and ultra‐long cycling life of up to 210 cycles at 1000 mA/g under a fixed capacity of 1000 mA·h/g,which is two times longer than those of Pt@CNTs and PtNi@CNTs.Furthermore,it is revealed that surface engineering of PtNi nanoalloy via B doping can efficiently tailor the electron structure of nanoalloy and optimize the adsorption of oxygen species,consequently delivering excellent Li‐O2 battery performance.Therefore,this strategy of regulating the nanoalloy by doping nonmetallic elements will pave an avenue for the design of high‐performance catalysts for metal‐oxygen batteries.展开更多
Plasmonic metal nanomaterials with intrinsic surface–enhanced Raman scattering(SERS)and photothermal properties,especially AuAg nanoalloys with both the outstanding merits of Au and Ag nanocrystals,show huge applicat...Plasmonic metal nanomaterials with intrinsic surface–enhanced Raman scattering(SERS)and photothermal properties,especially AuAg nanoalloys with both the outstanding merits of Au and Ag nanocrystals,show huge application prospects in bacterial theranostics.However,the direct exposure of AuAg nanoalloys in external conditions probably cause undesirable reactions and poisonous metal ion leakage during SERS detection and photothermal antibacterial therapy process,which severely hinder bacterial theranostics applications.Herein,we report an ultrastable graphene–isolated AuAg nanoalloy(GAA)with AuAg core confined in few–layer graphitic shell as a versatile platform for bacterial detection and therapy.The encapsulation of graphene ensures the good stability of AuAg core,that its superior SERS and photothermal properties are therefore further guaranteed.GAA is used for SERS detection of two vital bacterial biomarkers(including corrosive cyanide and pyocyanin),exhibiting good SERS quantitative and multiplexing ability.GAA is further used for photothermal antibacterial therapy application,and ultrahigh antibacterial efficacies for both Gram–negative Escherichia coli and Gram–positive Staphylococcus aureus are achieved under 808 nm laser irradiation.This work proposes a valuable method to develop robust bacterial theranostic platform.展开更多
Copper is one of the most efficient catalysts widely investigated in electrochemical CO_(2) reduction, however, the further development of copper-based catalysts is constrained by severe stability problems. In this wo...Copper is one of the most efficient catalysts widely investigated in electrochemical CO_(2) reduction, however, the further development of copper-based catalysts is constrained by severe stability problems. In this work, we developed a method for the synthesis of highly ordered Cu Au intermetallic nanoalloys(o-CuAu) under mild conditions(< 250℃), which can convert carbon dioxide to carbon monoxide with high selectivity and can operate stably for 160 h without current decay. The improved stability is believed to be due to the increased mixing enthalpy and stronger atomic interactions between Cu and Au atoms in the intermetallic nanoalloy. In addition, XPS results, Tafel slope and in situ IR spectroscopy demonstrate that high valence gold atoms on o-CuAu surface promote the reduction of CO_(2). In contrast, the disordered CuAu nanoalloy(d-CuAu) underwent atomic rearrangement to form a Cu-rich structure on the surface, leading to reduced stability. These findings may provide insight into the rational design of stable CO_(2) RR electrocatalysts through proper structural engineering.展开更多
Carbon-based nanozymes with multifunctional applications have attracted enormous attention,however,there is still a lack of an effective strategy for inexpensive preparation of high-active carbon-based nanozyme.We her...Carbon-based nanozymes with multifunctional applications have attracted enormous attention,however,there is still a lack of an effective strategy for inexpensive preparation of high-active carbon-based nanozyme.We herein report a waste paperderived CoFe_(2)O_(4)/porous carbon nanozyme for the colorimetric detection of glucose and glutathione(GSH)in biofluids.The hybrid CoFe_(2)O_(4)/porous carbon material was successfully prepared via a combined impregnation,hydrolysis and carbonization method.Newly constructed CoFe_(2)O_(4)/porous carbon material with enhanced peroxidase-like activity could oxidize colorless tetramethylbenzidine(TMB)to blue oxidized TMB with adding H_(2)O_(2).A sensitive colorimetric analysis platform for monitoring the levels of glucose and GSH in biofluids was respectively developed.The proposed analytical method possessed predominant features such as low limit of detections(LODs)(0.16μmol/L for glucose and 120 nmol/L for GSH),broad linear ranges(1-200μmol/L for glucose and 1-50μmol/L for GSH),and excellent practical potential.This multipurpose platform not only provides a promising strategy for transforming waste paper into valuable carbon-based nanozyme,but also paves the way for excavating the potential biomedical and environmental applications from waste paper.展开更多
For future clean energy demand,it is essential to develop highly efficient and durable materials for use in renewable energy conversion devices.Herein,we report an electrocatalyst loaded with Pd-Pb-Bi nanoalloys on re...For future clean energy demand,it is essential to develop highly efficient and durable materials for use in renewable energy conversion devices.Herein,we report an electrocatalyst loaded with Pd-Pb-Bi nanoalloys on reduced graphene(rGO)-wrapped In_(2)O_(3)(PdPbBi@rGO/In_(2)O_(3))prepared by a hydrothermal method.PdPbBi@rGO/In_(2)O_(3)exhibits higher forward current density(229.12 mA·cm^(-2)),larger electrochemical active surface area(ECSA)(85.87 m^(2)·g^(-1)Pd),smaller impedance(12.68Ω)and lower E_(onset)(-0.56 V)than commercial Pd/C.Specifically,the current density and ECS A are 8.46 and3.38 times higher than those of commercial Pd/C(27.07 mA·cm^(-2),25.41 m^(2)·g^(-1)Pd),respectively.Furthermore,the oxidation mechanism of ethylene glycol and the removal of carbon monoxide[CO]_(ads)from the surface of Pd are also discussed in detail.The columnar support structure wrapped by rGO provides a huge active surface area for catalysis.Moreover,the electronic effect of Pd-PbBi nanoalloys can accelerate the removal of CO intermediate species,obtain more Pd active sites and improve the electrocatalytic performance.Our first synthesis of this highly electrocatalyst offers promising value for commercial application in direct fuel cells.展开更多
Developing exceptionally durable and efficient oxygen reduction reaction(ORR)catalysts is of paramount importance to the widespread commercialization of proton exchange membrane fuel cells(PEMFCs)but is still challeng...Developing exceptionally durable and efficient oxygen reduction reaction(ORR)catalysts is of paramount importance to the widespread commercialization of proton exchange membrane fuel cells(PEMFCs)but is still challenging.Herein,PtCu nanoalloys rooted on nitrogen-doped carbon nanosheets(PtCuNC-700)with fully exposed PtCu nanoalloys and strong metal–support interaction were developed.Benefiting from its structural and compositional merits,PtCuNC-700 showcases superior ORR activity and stability with a specific activity of 1.05mA cm^(−2)and mass activity of 0.45 A mgPt^(−1),4.2-fold and 3.7-fold higher than Pt/C(0.25 mA cm^(−2)and 0.12 A mgPt^(−1)),respectively.Moreover,PtCuNC-700 exhibits first-class performance in H2/air PEMFC assessment and delivers a peak power density of 929.7 mW cm^(−2)and excellent cycling stability up to 30,000 cycles.Theoretical calculations disclose that the synergistic effect of alloying Pt with Cu combined with the strong interaction between PtCu nanoalloys and nitrogen-doped carbon nanosheets can effectively modify the local electron configuration and density of states of Pt sites approaching the Fermi level.Hence,the PtCu-alloy catalysts realized here diminish the energy barrier for ORR and accelerate their reaction kinetics.This work provides a reliable and effective approach to boost the activity and stability of Pt alloy-based ORR electrocatalysts in PEMFCs.展开更多
The development of active yet stable catalysts for oxygen reduction reaction(ORR)is still a major issue for the extensive permeation of fuel cells into everyday technology.While nanostructured Pt catalysts are to date...The development of active yet stable catalysts for oxygen reduction reaction(ORR)is still a major issue for the extensive permeation of fuel cells into everyday technology.While nanostructured Pt catalysts are to date the best available systems in terms of activity,the same is not true for stability,particularly under operating conditions.In this work,Pt_(Х)Y alloy nanoparticles are proposed as active and durable electrocatalysts for ORR.Pt_(Х)Y nanoalloys are synthesized and further optimized by laser ablation in liquid followed by laser fragmentation in liquid.The novel integrated laser-assisted methodology succeeded in producing Pt_(Х)Y nanoparticles with the ideal size(<10 nm)of commercial Pt catalysts,yet resulting remarkably more active with E_(1/2)=0.943 V vs.RHE,specific activity=1095μA cm^(-2) and mass activity>1000 A g^(-1).At the same time,the nanoalloys are embedded in a fine Pt oxide matrix,which allows a greater stability of the catalyst than the commercial Pt reference,as directly verified on a gas diffusion electrode.展开更多
Currently,FeNi nanoalloys have received considerable attention for the oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)in rechargeable aqueous zinc(Zn)-air batteries(ZABs)because of their high content ...Currently,FeNi nanoalloys have received considerable attention for the oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)in rechargeable aqueous zinc(Zn)-air batteries(ZABs)because of their high content and good chemical stability.However,their poor electronic conductivity,small surface area,and sluggish activity seriously hinder their catalytic performance.Herein,S-modulated FeNi nanoalloys supported by hierarchically porous carbon(SFeNi/PC)are synthesized through the thermal treatment of metal-organic precursors for efficient bifunctional oxygen catalysis.S decoration endows S-FeNi/PC with a superior OER performance while maintaining an ORR performance that is comparable to that of Pt/C.Hence,S-FeNi/PC exhibits excellent bifunctional oxygen catalytic activity,outperforming the noble-metal-based composite catalysts of Pt/C and RuO_(2).Notably,the ZABs assembled with S-FeNi/PC exhibit high specific capacity(792 mA h g^(-1)),high peak power density(123.5 mW cm^(-2)),and remarkable durability for 700 charge/discharge cycles at 10 mA cm^(-2),which surpasses the performance of commercially available Pt/C-RuOand other catalysts in previously reported studies.This study will provide not only new bifunctional oxygen electrodes for efficient ZAB devices but also new insights into the design of FeNi-based materials for a wide range of catalytic applications.展开更多
In a recent online publication of Science,Professor Peter Strasser of the Technical University of Berlin,Germany,and his collaborators reported element-specific anisotropic growth of Pt and Ni in shaped Pt alloy synth...In a recent online publication of Science,Professor Peter Strasser of the Technical University of Berlin,Germany,and his collaborators reported element-specific anisotropic growth of Pt and Ni in shaped Pt alloy synthesis[1].They showed that the surface steps in the Pt3Ni concave hexapod alloy formed in the initial stage of the synthesis were crucial in the segregation of an M-rich(M=Ni,Co,展开更多
The oxidation of carbon monoxide is widely investigated for realistic and potential uses in energy production and environmental processes.As a probe reaction to the surface properties,it gives an insight into the rela...The oxidation of carbon monoxide is widely investigated for realistic and potential uses in energy production and environmental processes.As a probe reaction to the surface properties,it gives an insight into the relationship between the structure of active phase and catalytic performance.Noble metals alloyed with certain transition metals in the form of a nanoalloy exhibit enhanced catalytic activity for various reactions,especially when simultaneous activation of oxygen and CO is involved.This article highlights some of these insights into nanoalloy catalysts in which platinum group metal(PGM)is alloyed with a second and/or third transition metal(M/M′=Co,Fe,V,Ni,Ir,etc.),for catalytic oxidation of carbon monoxide in a gas phase.Recent studies have provided important insights into how the atomic-scale structures of the nanoalloy catalysts operate synergistically in activating oxygen and maneuvering surface oxygenated species.The exploration of atomic-scale chemical/structural ordering and coordination in correlation with the catalytic oxidation properties based on findings from ex-and in-situ synchrotron X-ray techniques is emphasized;for example,high-energy X-ray diffraction coupled to atomic-pair distribution function and X-ray absorption fine-structure spectroscopic analysis.The understanding of the detailed active sites of the nanoalloys has significant implications for the design of low-cost,active,and durable catalysts for sustainable energy production and environmental processes.展开更多
The 5 nm AuPd nanoalloy in mole ratio of Au:Pd=32 : 1 was prepared, using sodium citrate as the stabilizing agent and NaBH4 as the reductant. The AuPd nanoalloy was modified by the aptamer to prepare an aptamer- Au...The 5 nm AuPd nanoalloy in mole ratio of Au:Pd=32 : 1 was prepared, using sodium citrate as the stabilizing agent and NaBH4 as the reductant. The AuPd nanoalloy was modified by the aptamer to prepare an aptamer- AuPd (AptAuPd) probe for resonance scattering (RS) detection of 5.(Y-1250 nmol/L Hg2+. The AptAuPd-Hg2+ aptamer reaction solution was filtrated by membrane, and the AptAuPd in the filtrate exhibited strong catalytic ef- fect on the slow NiP particle reaction between NiCI2 and NaHzPO2, and the NiP particles showed a RS peak at 508 nm. The RS intensity decreased when Hg2+ concentration increased. The decreased RS intensity was linear to Hg2+ concentration in the range of 0.5--1250 nmol/L. The RS assays were used to determine Hg2+ in real samples, with good results.展开更多
基金Funded by the Doctoral Fund of Chengdu University(No.2081919131)the Sichuan Science and Technology Program(No.2023YFG0229)。
文摘Ni^(2+)/Cu^(2+)/SO_(4)^(2-)/polyvinyl alcohol precursor fibers with uniform diameters were prepared through electrospinning.Nickel-based composite nanoalloys containing Ni,Cu,and S were prepared through heat treatment in an Ar atmosphere.The experimental results show that the main components of the prepared nanoalloys are NiCu,Ni_(3)S_(2),Ni,and C.The nanoalloys exhibit fine grain sizes about 200-500 nm,which can increase with increasing heat treatment temperature.Electrochemical test results show that the nickel sulfidemodified NiCu nanoalloy composites exhibit excellent oxygen evolution reaction properties,and the oxygen evolution reaction properties gradually improve with the increasing heat treatment temperature.The sample prepared at 1 000℃ for 40 min show a low overpotential of 423 mV and a small Tafel slope of 134 mV·dec^(-1) at a current density of 10 mA·cm^(-2).
基金the financial support from the National Natural Science Foundation of China(51904191)the Overseas High-level Talents Foundation of Shenzhen。
文摘Light-metalloid-atom-doped Pd interstitial nanoalloy is promising candidate for electrocatalysis because of the favorable electronic effect.Herein,an innovative method was developed to synthesize C-doped Pd interstitial nanoalloy using palladium acetate both as metal precursor and C dopant.Elaborate characterizations demonstrated that C atoms were successfully doped into the Pd lattice via self-catalytic decomposition of acetate ions.The as-synthesized C-doped Pd catalysts showed excellent activity and durable stability for formic acid electrooxidation.The mass activity and specific activity at 0.6 V of C-doped Pd were approximately 2.59 A/mg and 3.50 mA cm^(-2),i.e.,2.4 and 2.6 times of Pd,respectively.DFT calculations revealed that interstitial doping with C atoms induced differentiation of Pd sites.The strong noncovalent interaction between the Pd sites and the key intermediates endowed Pd with high-selectivity to direct routes and enhanced CO tolerance.This work presents a sites-differentiation strategy for metallic catalysts to improve the electrocatalysis.
基金National Natural Science Foundation of China,Grant/Award Numbers:21573240,21706265,21922813The would like to acknowledge the support provided by the National Natural Science Foundation of China(Grant no.:21573240 and 21706265)+2 种基金the Center for Mesoscience,Institute of Process Engineering,Chinese Academy of Sciences(MPCS-2017-A-02)State Key Laboratory of Multiphase Complex Systems(MPCS-2019-A-09)National Science Fund for Excellent Young Scholars(21922813).
文摘Preciously tuning the surface composition of noble metal nanoparticles with the particle size of only 2 nm or less by alloying with other metals represents a powerful strategy to boost their electrocatalytic selectivity.However,the synthesis of ultrafine nanoalloys and tuning their surface composition remain challenging.In this report,ultrafine CuPd nanoalloys with the particle size of ca.2 nm are synthesized based on the galvanic replacement reaction between presynthesized Cu nanoparticles and Pd2+precursors,and the tuning of their surface compositions is also achieved by changing the atom ratios of Cu/Pd.For the electrocatalytic reduction of CO2,Cu5Pd5 nanoalloys show the CO Faradaic efficiency(FE)of 88%at−0.87 V,and the corresponding mass activity reaches 56 A/g that is much higher than those of Cu8Pd2 nanoalloys,Cu3Pd7 nanoalloys and most of previously reported catalysts.Density functional theory uncovers that with the increase of Pd on the surface of the ultrafine CuPd nanoalloys,the adsorbed energy of both of intermediate COOH*and CO*to the Pd sites is strengthened.The Cu5Pd5 nanoalloys with the optimal surface composition better balance the adsorption of COOH*and desorption of CO*,achieving the highest selectivity and activity.The difficult liberation of absorbed CO*on the surface of Cu3Pd7 nanoalloys provides carbon source to favor the production of ethylene,endowing the Cu3Pd7 nanoalloys with the highest selectivity for ethylene among these ultrafine CuPd nanoalloys.
基金financial support from Joint School of Nanoscience and Nanoengineering,USA
文摘The electrochemical performance of a battery is considered to be primarily dependent on the electrode material. However, engineering and optimization of electrodes also play a crucial role, and the same electrode material can be designed to offer significantly improved batteries. In this work, Si–Fe–Mn nanomaterial alloy(Si/alloy) and graphite composite electrodes were densified at different calendering conditions of 3, 5, and 8 tons, and its influence on electrode porosity, electrolyte wettability, and long-term cycling was investigated. The active material loading was maintained very high(~2 mg cm^(-2)) to implement electrode engineering close to commercial loading scales. The densification was optimized to balance between the electrode thickness and wettability to enable the best electrochemical properties of the Si/alloy anodes.In this case, engineering and optimizing the Si/alloy composite electrodes to 3 ton calendering(electrode densification from 0.39 to 0.48 g cm^(-3)) showed enhanced cycling stability with a high capacity retention of ~100% over 100 cycles.
基金the support of the“Transformational Technologies for Clean Energy and Demonstration”,Strategic Priority Research Program of the Chinese Academy of Sciences(XDA 21090203)the National Natural Science Foundation of China(22078315,22172169)+2 种基金the Youth Innovation Promotion Association of Chinese Academy of Sciences(2018214,2020189)the Liaoning Revitalization Talents Program(XLYC1907066)the Liaoning Bai Qian Wan Talents Program and DICP(Grant:DICP I202012)。
文摘Catalytic conversion of CO_(2) to high-value products is a crucial method to achieve targets of carbon dioxide emissions peak and carbon neutralization.However,realizing a controllable product distribution in a single CO_(2) hydrogenation process is of great challenge.Herein,we prepared the CuFe nanoalloy catalyst that directly transforms CO_(2) to alkanes using physical sputtering method in mild condition.The characteristic results show that the proximity between Cu and Fe is the crucial factor to tunable products among the different catalysts.The formation of unique coordination of FeCu4 nanoalloys from high-energy sputtering process provides close interaction between Cu and Fe,which is favorable to formation of low carbon paraffin,however,a distant proximity and weak interaction will increase the selectivity of olefins and alcohols.This work provides a general strategy for tuning target chemicals and enriches the viewpoints in CO_(2) hydrogenation.
文摘The classical molecular dynamics simulations in canonical NVT ensemble conditions are used to investigate the melting transition in different heating rates of Pt-Ag-Au ternary nanoalloys.In order to obtain the initial configurations used in the molecular dynamics simulations,optimizing the chemical ordering of Pt_(13)AgnAu_(42−n)(n=0-42)ternary nanoalloys was performed using the Basin-Hopping algorithm which would not allow changes in the icosahedron structure.The Gupta many-body potential was used to model interatomic interactions in both molecular dynamics simulations and optimization simulations.The melting transitions of selected Pt-Ag-Au nanoalloys were explored using caloric curves and Lindemann parameters.There have been two identified types of melting mechanisms,one includes sudden jump behavior in the caloric curve and the other is an isomerization while melting transition.The temperature range in which the isomerization takes place depends on the heating rate value.
文摘In this study,truncated octahedron(TO)structure is selected for further analysis and we focus on 38-atom Pd-Pt-Ag trimetallic nanoalloys.The best chemical ordering structures of PdnAg32-nPt6 trimetallic nanoalloys are obtained at Gupta level.The structures with the lowest energy at Gupta level are then re-optimized by density functional theory(DFT)relaxations and DFT results confirm the Gupta level calculations with small shifts on bond lengths indicating TO structure is favorable for 38-atom of PdnAg32-nPt6 trimetallic nanoalloys.The DFT excess energy analysis shows that Pd8Ag24Pt6 composition has the lowest excess energy value in common with excess energy analysis at Gupta level.In Pd8Ag24Pt6 composition,eight Pd atoms are central sites of 8(111)hexagonal facets of TO,24 Ag atoms locate on surface,and 6 Pt atoms locate at the core of the structure.It is also obtained that all of the compositions except Pd18Ag14Pt6 and Pd20Ag12Pt6 exhibit a octahedral Pt core.Besides,it is observed that there is a clear tendency for Ag atoms to segregate to the surface and also Pt atoms prefer to locate at core due to order parameter(R)variations.
文摘Precursor (Metal-organic decomposition (MOD)) inks are used to fabricate 2D and 3D printed conductive structures directly onto a substrate. By formulating a nanoalloy structure containing multiple metals, the opportunity to modify chemical and physical properties exists. In this paper, a copper-nickel bimetallic nanoalloy film was fabricated by mixing copper and nickel precursor inks and sintering them in vacuum. The individual elemental inks were formulated and characterized using SEM, EDS, and XRD. During thermal processing, elemental copper forms first and is followed by the formation of bimetallic copper-nickel alloy. The encapsulation of the underlying copper by the nickel-rich alloy provides excellent oxidation resistance. No change in film resistance was observed after the film was exposed to an oxygen plasma. Nanoalloy films printed using reactive metallic inks have a variety of important applications involving local control of alloy composition. Examples include facile formation of layered nanostructures, and electrical conductivity with oxidative stability.
文摘Escherichia coli,is a pathogenic bacterium that causes serious infections,whose therapeutic treatment is threatened by the emergence of multiple resistance to conventional antibiotics.In recent years,metal nanoparticles(NPs)have been studied for their antimicrobial capacity and their possible applications as an alternative to antibiotics against different pathogens.NPs also vary in synthesis techniques;either by chemical,physical and biological methods.The objective of this work was to study the possible antimicrobial capacity of Cu-Ni nanoalloys obtained by a method called citrate-gel.The antimicrobial capacity of the NPs mentioned above was evaluated in vitro by the agar diffusion method.Most of the NPs evaluated showed antibacterial activity against the strain of E.coli studied.When combining chemical and biological NP,synergistic effects are observed with an increase in antibacterial activity in some cases.We can conclude that NPs derived from chemical and biological synthesis could be used as antimicrobials against E.coli and when these are combined,antibacterial effects increase.In the future,these applications of nanomaterials could be used as an alternative to the use of antibiotics against infections that have limited treatments.
基金supported by the National Natural Science Foundation of China(Nos.22125903 and 51872283)Dalian Innovation Support Plan for High Level Talents(No.2019RT09)+2 种基金Dalian National Laboratory for Clean Energy(DNL),CAS,DNL Cooperation Fund,CAS(Nos.DNL201912,DNL201915,DNL202016,and DNL202019)DICP(No.DICP I2020032)the Joint Fund of the Yulin University and the Dalian National Laboratory for Clean Energy(Nos.YLU‐DNL Fund 2021002 and YLU‐DNL 2021009).
文摘The realization of high‐efficiency,reversible,stable,and safe Li‐O2 batteries is severely hindered by the large overpotential and side reactions,especially at high rate conditions.Therefore,rational design of cathode catalysts with high activity and stability is crucial to overcome the terrible issues at high current density.Herein,we report a surface engineering strategy to adjust the surface electron structure of boron(B)‐doped PtNi nanoalloy on carbon nanotubes(PtNiB@CNTs)as an efficient bifunctional cathodic catalyst for high‐rate and long‐life Li‐O2 batteries.Notably,the Li‐O2 batteries assembled with as‐prepared PtNiB@CNT catalyst exhibit ultrahigh discharge capacity of 20510 mA·h/g and extremely low overpotential of 0.48 V at a high current density of 1000 mA/g,both of which outperform the most reported Pt‐based catalysts recently.Meanwhile,our Li‐O2 batteries offer excellent rate capability and ultra‐long cycling life of up to 210 cycles at 1000 mA/g under a fixed capacity of 1000 mA·h/g,which is two times longer than those of Pt@CNTs and PtNi@CNTs.Furthermore,it is revealed that surface engineering of PtNi nanoalloy via B doping can efficiently tailor the electron structure of nanoalloy and optimize the adsorption of oxygen species,consequently delivering excellent Li‐O2 battery performance.Therefore,this strategy of regulating the nanoalloy by doping nonmetallic elements will pave an avenue for the design of high‐performance catalysts for metal‐oxygen batteries.
基金funding support from the National Key Research and Development Program of China(Nos.2022YFC2403501,2020YFA0210800)National Natural Science Foundation of China(No.22225401)+1 种基金Science and Technology Innovation Program of Hunan Province(No.2020RC4017)China Postdoctoral Science Foundation(No.2021M701145)。
文摘Plasmonic metal nanomaterials with intrinsic surface–enhanced Raman scattering(SERS)and photothermal properties,especially AuAg nanoalloys with both the outstanding merits of Au and Ag nanocrystals,show huge application prospects in bacterial theranostics.However,the direct exposure of AuAg nanoalloys in external conditions probably cause undesirable reactions and poisonous metal ion leakage during SERS detection and photothermal antibacterial therapy process,which severely hinder bacterial theranostics applications.Herein,we report an ultrastable graphene–isolated AuAg nanoalloy(GAA)with AuAg core confined in few–layer graphitic shell as a versatile platform for bacterial detection and therapy.The encapsulation of graphene ensures the good stability of AuAg core,that its superior SERS and photothermal properties are therefore further guaranteed.GAA is used for SERS detection of two vital bacterial biomarkers(including corrosive cyanide and pyocyanin),exhibiting good SERS quantitative and multiplexing ability.GAA is further used for photothermal antibacterial therapy application,and ultrahigh antibacterial efficacies for both Gram–negative Escherichia coli and Gram–positive Staphylococcus aureus are achieved under 808 nm laser irradiation.This work proposes a valuable method to develop robust bacterial theranostic platform.
基金financial support from National Nature Science Foundation of China (Nos. 22078232 and 21938008)the Science and Technology Major Project of Tianjin (Nos. 19ZXNCGX00030 and 20JCYBJC00870)。
文摘Copper is one of the most efficient catalysts widely investigated in electrochemical CO_(2) reduction, however, the further development of copper-based catalysts is constrained by severe stability problems. In this work, we developed a method for the synthesis of highly ordered Cu Au intermetallic nanoalloys(o-CuAu) under mild conditions(< 250℃), which can convert carbon dioxide to carbon monoxide with high selectivity and can operate stably for 160 h without current decay. The improved stability is believed to be due to the increased mixing enthalpy and stronger atomic interactions between Cu and Au atoms in the intermetallic nanoalloy. In addition, XPS results, Tafel slope and in situ IR spectroscopy demonstrate that high valence gold atoms on o-CuAu surface promote the reduction of CO_(2). In contrast, the disordered CuAu nanoalloy(d-CuAu) underwent atomic rearrangement to form a Cu-rich structure on the surface, leading to reduced stability. These findings may provide insight into the rational design of stable CO_(2) RR electrocatalysts through proper structural engineering.
基金supported by the Science and Technology Innovation Special Fund of Xuzhou,China(KC21292)Special fund for Science and Technology Project of Jiangsu Province,China(BE2022715)+1 种基金Outstanding Talents Research Start-up Fund of Xuzhou Medical University,China(D2021003)Integrated Innovation Project of Xuzhou Medical University,China(XYRHCX2021017)
文摘Carbon-based nanozymes with multifunctional applications have attracted enormous attention,however,there is still a lack of an effective strategy for inexpensive preparation of high-active carbon-based nanozyme.We herein report a waste paperderived CoFe_(2)O_(4)/porous carbon nanozyme for the colorimetric detection of glucose and glutathione(GSH)in biofluids.The hybrid CoFe_(2)O_(4)/porous carbon material was successfully prepared via a combined impregnation,hydrolysis and carbonization method.Newly constructed CoFe_(2)O_(4)/porous carbon material with enhanced peroxidase-like activity could oxidize colorless tetramethylbenzidine(TMB)to blue oxidized TMB with adding H_(2)O_(2).A sensitive colorimetric analysis platform for monitoring the levels of glucose and GSH in biofluids was respectively developed.The proposed analytical method possessed predominant features such as low limit of detections(LODs)(0.16μmol/L for glucose and 120 nmol/L for GSH),broad linear ranges(1-200μmol/L for glucose and 1-50μmol/L for GSH),and excellent practical potential.This multipurpose platform not only provides a promising strategy for transforming waste paper into valuable carbon-based nanozyme,but also paves the way for excavating the potential biomedical and environmental applications from waste paper.
基金financially supported by the Key Laboratory of Organic Functional Molecule Synthesis and Applications,Ministry of Education(No.KLSAOFM1913)。
文摘For future clean energy demand,it is essential to develop highly efficient and durable materials for use in renewable energy conversion devices.Herein,we report an electrocatalyst loaded with Pd-Pb-Bi nanoalloys on reduced graphene(rGO)-wrapped In_(2)O_(3)(PdPbBi@rGO/In_(2)O_(3))prepared by a hydrothermal method.PdPbBi@rGO/In_(2)O_(3)exhibits higher forward current density(229.12 mA·cm^(-2)),larger electrochemical active surface area(ECSA)(85.87 m^(2)·g^(-1)Pd),smaller impedance(12.68Ω)and lower E_(onset)(-0.56 V)than commercial Pd/C.Specifically,the current density and ECS A are 8.46 and3.38 times higher than those of commercial Pd/C(27.07 mA·cm^(-2),25.41 m^(2)·g^(-1)Pd),respectively.Furthermore,the oxidation mechanism of ethylene glycol and the removal of carbon monoxide[CO]_(ads)from the surface of Pd are also discussed in detail.The columnar support structure wrapped by rGO provides a huge active surface area for catalysis.Moreover,the electronic effect of Pd-PbBi nanoalloys can accelerate the removal of CO intermediate species,obtain more Pd active sites and improve the electrocatalytic performance.Our first synthesis of this highly electrocatalyst offers promising value for commercial application in direct fuel cells.
基金support from the National Natural Science Foundation of China(grant nos.52073137,51763018,U20A20246)the Fundamental Research Funds for the Central Universities(Innovation funded Projects,no.2022CXZZ104).
文摘Developing exceptionally durable and efficient oxygen reduction reaction(ORR)catalysts is of paramount importance to the widespread commercialization of proton exchange membrane fuel cells(PEMFCs)but is still challenging.Herein,PtCu nanoalloys rooted on nitrogen-doped carbon nanosheets(PtCuNC-700)with fully exposed PtCu nanoalloys and strong metal–support interaction were developed.Benefiting from its structural and compositional merits,PtCuNC-700 showcases superior ORR activity and stability with a specific activity of 1.05mA cm^(−2)and mass activity of 0.45 A mgPt^(−1),4.2-fold and 3.7-fold higher than Pt/C(0.25 mA cm^(−2)and 0.12 A mgPt^(−1)),respectively.Moreover,PtCuNC-700 exhibits first-class performance in H2/air PEMFC assessment and delivers a peak power density of 929.7 mW cm^(−2)and excellent cycling stability up to 30,000 cycles.Theoretical calculations disclose that the synergistic effect of alloying Pt with Cu combined with the strong interaction between PtCu nanoalloys and nitrogen-doped carbon nanosheets can effectively modify the local electron configuration and density of states of Pt sites approaching the Fermi level.Hence,the PtCu-alloy catalysts realized here diminish the energy barrier for ORR and accelerate their reaction kinetics.This work provides a reliable and effective approach to boost the activity and stability of Pt alloy-based ORR electrocatalysts in PEMFCs.
基金the P-DISC Grant PROMETEO(project number:P-DiSC#03NExuS_BIRD2021-UNIPD)DYNAMO(project number:P-P-DiSC#01BIRD2020-UNIPD)the financial support of the Fellowship in Applied Electrochemistry 2020。
文摘The development of active yet stable catalysts for oxygen reduction reaction(ORR)is still a major issue for the extensive permeation of fuel cells into everyday technology.While nanostructured Pt catalysts are to date the best available systems in terms of activity,the same is not true for stability,particularly under operating conditions.In this work,Pt_(Х)Y alloy nanoparticles are proposed as active and durable electrocatalysts for ORR.Pt_(Х)Y nanoalloys are synthesized and further optimized by laser ablation in liquid followed by laser fragmentation in liquid.The novel integrated laser-assisted methodology succeeded in producing Pt_(Х)Y nanoparticles with the ideal size(<10 nm)of commercial Pt catalysts,yet resulting remarkably more active with E_(1/2)=0.943 V vs.RHE,specific activity=1095μA cm^(-2) and mass activity>1000 A g^(-1).At the same time,the nanoalloys are embedded in a fine Pt oxide matrix,which allows a greater stability of the catalyst than the commercial Pt reference,as directly verified on a gas diffusion electrode.
基金financially supported by the National Natural Science Foundation of China(22179087,51903178,and 51803134)the Science and Technology Project of Sichuan Province(2021YFH0135)+2 种基金China Postdoctoral Science Foundation(2021M692303)the Post-doctor Research Projectand Sichuan University(2021SCU12013)。
文摘Currently,FeNi nanoalloys have received considerable attention for the oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)in rechargeable aqueous zinc(Zn)-air batteries(ZABs)because of their high content and good chemical stability.However,their poor electronic conductivity,small surface area,and sluggish activity seriously hinder their catalytic performance.Herein,S-modulated FeNi nanoalloys supported by hierarchically porous carbon(SFeNi/PC)are synthesized through the thermal treatment of metal-organic precursors for efficient bifunctional oxygen catalysis.S decoration endows S-FeNi/PC with a superior OER performance while maintaining an ORR performance that is comparable to that of Pt/C.Hence,S-FeNi/PC exhibits excellent bifunctional oxygen catalytic activity,outperforming the noble-metal-based composite catalysts of Pt/C and RuO_(2).Notably,the ZABs assembled with S-FeNi/PC exhibit high specific capacity(792 mA h g^(-1)),high peak power density(123.5 mW cm^(-2)),and remarkable durability for 700 charge/discharge cycles at 10 mA cm^(-2),which surpasses the performance of commercially available Pt/C-RuOand other catalysts in previously reported studies.This study will provide not only new bifunctional oxygen electrodes for efficient ZAB devices but also new insights into the design of FeNi-based materials for a wide range of catalytic applications.
文摘In a recent online publication of Science,Professor Peter Strasser of the Technical University of Berlin,Germany,and his collaborators reported element-specific anisotropic growth of Pt and Ni in shaped Pt alloy synthesis[1].They showed that the surface steps in the Pt3Ni concave hexapod alloy formed in the initial stage of the synthesis were crucial in the segregation of an M-rich(M=Ni,Co,
基金supported by the National Natural Science Foundation of China(21373171),DOE-BES(DE-SC0006877)the NSF(CBET-0709113,CMMI-1100736),UTC Power,and Honda
文摘The oxidation of carbon monoxide is widely investigated for realistic and potential uses in energy production and environmental processes.As a probe reaction to the surface properties,it gives an insight into the relationship between the structure of active phase and catalytic performance.Noble metals alloyed with certain transition metals in the form of a nanoalloy exhibit enhanced catalytic activity for various reactions,especially when simultaneous activation of oxygen and CO is involved.This article highlights some of these insights into nanoalloy catalysts in which platinum group metal(PGM)is alloyed with a second and/or third transition metal(M/M′=Co,Fe,V,Ni,Ir,etc.),for catalytic oxidation of carbon monoxide in a gas phase.Recent studies have provided important insights into how the atomic-scale structures of the nanoalloy catalysts operate synergistically in activating oxygen and maneuvering surface oxygenated species.The exploration of atomic-scale chemical/structural ordering and coordination in correlation with the catalytic oxidation properties based on findings from ex-and in-situ synchrotron X-ray techniques is emphasized;for example,high-energy X-ray diffraction coupled to atomic-pair distribution function and X-ray absorption fine-structure spectroscopic analysis.The understanding of the detailed active sites of the nanoalloys has significant implications for the design of low-cost,active,and durable catalysts for sustainable energy production and environmental processes.
基金Project supported by the National Natural Science Founclation of china (Nos. 21075023, 20965002, 20865002), Natural Science Foundation of Guangxi (No. 0991021z), the Research Funds of Guangxi Water Conservancy, the Research Funds of Key Laboratory of Ecology of Rare and En- dangered Species and Environmental Protection, Ministry of Education (No. 10012019) and the Research Funds of Guangxi Education Office.
文摘The 5 nm AuPd nanoalloy in mole ratio of Au:Pd=32 : 1 was prepared, using sodium citrate as the stabilizing agent and NaBH4 as the reductant. The AuPd nanoalloy was modified by the aptamer to prepare an aptamer- AuPd (AptAuPd) probe for resonance scattering (RS) detection of 5.(Y-1250 nmol/L Hg2+. The AptAuPd-Hg2+ aptamer reaction solution was filtrated by membrane, and the AptAuPd in the filtrate exhibited strong catalytic ef- fect on the slow NiP particle reaction between NiCI2 and NaHzPO2, and the NiP particles showed a RS peak at 508 nm. The RS intensity decreased when Hg2+ concentration increased. The decreased RS intensity was linear to Hg2+ concentration in the range of 0.5--1250 nmol/L. The RS assays were used to determine Hg2+ in real samples, with good results.