The combination of different nanostructures can hinder phonons transmission in a wide frequency range and further reduce the thermal conductivity(TC).This will benefit the improvement and application of thermoelectric...The combination of different nanostructures can hinder phonons transmission in a wide frequency range and further reduce the thermal conductivity(TC).This will benefit the improvement and application of thermoelectric conversion,insulating materials and thermal barrier coatings,etc.In this work,the effects of nanopillars and Ge nanoparticles(GNPs)on the thermal transport of Si nanowire(SN)are investigated by nonequilibrium molecular dynamics(NEMD)simulation.By analyzing phonons transport behaviors,it is confirmed that the introduction of nanopillars leads to the occurrence of lowfrequency phonons resonance,and nanoparticles enhance high-frequency phonons interface scattering and localization.The results show that phonons transport in the whole frequency range can be strongly hindered by the simultaneous introduction of nanopillars and nanoparticles.In addition,the effects of system length,temperature,sizes and numbers of nanoparticles on the TC are investigated.Our work provides useful insights into the effective regulation of the TC of nanomaterials.展开更多
Well-aligned and closely-packed silicon nanopillar (SNP) arrays are fabricated by using a simple method with magnetron sputtering of Si on a porous anodic alumina (PAA) template at room temperature. The SNPs are f...Well-aligned and closely-packed silicon nanopillar (SNP) arrays are fabricated by using a simple method with magnetron sputtering of Si on a porous anodic alumina (PAA) template at room temperature. The SNPs are formed by selective growth on the top of the PAA pore walls. The growth mechanism analysis indicates that the structure of the SNPs can be modulated by the pore spacing of the PAA and the sputtering process and is independent of the wall width of the PAA. Moreover, nanocrystals are identified by using transmission electron microscopy in the as-deposited SNP samples, which are related to the heat isolation structure of the SNPs. The Raman focus depth profile reveals a high crystallization ratio on the surface.展开更多
Silicon nanopillars are fabricated by inductively coupled plasma (ICP) dry etching with the cesium chloride (CsCl) islands as masks originally from self-assembly. Wafers with nanopillar texture or planar surface a...Silicon nanopillars are fabricated by inductively coupled plasma (ICP) dry etching with the cesium chloride (CsCl) islands as masks originally from self-assembly. Wafers with nanopillar texture or planar surface are subjected to phosphorus (P) diffusion by liquid dopant source (POCl3) at 870 ℃ to form P-N junctions with a depth of 300 nm. The X-ray photoelectron spectroscopy (XPS) is used to measure the Si 2p core levels of P-N junction wafer with nanopillar texture and planar surface. With a visible light excitation, the P-N junction produces a new electric potential for photoelectric characteristic, which causes the Si 2p core level to have a energy shift compared with the spectrum without the visible light. The energy shift of the Si 2p core level is -0.27 eV for the planar P-N junction and -0.18 eV for the nanopillar one. The difference in Si 2p energy shift is due to more space lattice defects and chemical bond breaks for nanopillar compared with the planar one.展开更多
We have investigated the properties of organic light emitting diodes (OLEDs) with a nanopillar patterning structure at organic-metal or organic-organic interfaces. The results demonstrate that the introduction of a ...We have investigated the properties of organic light emitting diodes (OLEDs) with a nanopillar patterning structure at organic-metal or organic-organic interfaces. The results demonstrate that the introduction of a nanopillar structure can improve the light extraction efficiency greatly. We also find that the number, height, and position of nanopillars all affect the light extraction of OLEDs. The maximum power efficiency of a device with an optimized nanopillar patterning mode can be improved to 2.47 times that of the reference device. This enhancement in light extraction originates from the improved injected carriers, the broadened charge recombination zone, and the intensified wave guiding effects.展开更多
The quest for higher modulation speed and lower energy consumption has inevitably promoted the rapid development of semiconductor-based solid lighting devices in recent years. GaN-based light-emitting diodes (LEDs) ...The quest for higher modulation speed and lower energy consumption has inevitably promoted the rapid development of semiconductor-based solid lighting devices in recent years. GaN-based light-emitting diodes (LEDs) have emerged as promising candidates for achieving high efficiency and high intensity, and have received increasing attention among many researchers in this field. In this paper, we use a self-assembled array-patterned mask to fabricate InGaN/GaN multi- quantum well (MQW) LEDs with the intention of enhancing the light-emitting efficiency. By utilizing inductively coupled plasma etching with a self-assembled Ni cluster as the mask, nanopillar arrays are formed on the surface of the InGaN/GaN MQWs. We then observe the structure of the nanopillars and find that the V-defects on the surface of the conventional structure and the negative effects of threading dislocation are effectively reduced. Simultaneously, we make a comparison of the photoluminescence (PL) spectrum between the conventional structure and the nanopillar arrays, achieved under an experimental set-up with an excitation wavelength of 325 mm. The analysis demonstrates that MQW-LEDs with nanopillar arrays achieve a PL intensity 2.7 times that of conventional LEDs. In response to the PL spectrum, some reasons are proposed for the enhancement in the light-emitting efficiency as follows: 1) the improvement in crystal quality, namely the reduction in V-defects; 2) the roughened surface effect on the expansion of the critical angle and the attenuated total reflection; and 3) the enhancement of the light-extraction efficiency due to forward scattering by surface plasmon polariton modes in Ni particles deposited above the p-type GaN layer at the top of the nanopillars.展开更多
To investigate the process of strain relaxation and resultant variation of microstructure and magnetic properties,low-doped La_(0.825)Sr_(0.175)MnO_3 epitaxial films with different thicknesses are deposited on LaAlO_3...To investigate the process of strain relaxation and resultant variation of microstructure and magnetic properties,low-doped La_(0.825)Sr_(0.175)MnO_3 epitaxial films with different thicknesses are deposited on LaAlO_3 substrates and strain induced nanopillars are discovered inside the La_(0.825) Sr_(0.175)MnO_3 film. Perpendicular oriented nanopillars mainly exist below 30 nm and tend to disappear above 30 nm. The distribution of nanopillars not only induce the variation of lattice parameters and local structural distortion but also lead to the deviation of easy magnetization axis from the perpendicular direction. Specifically, the out-of-plane lattice parameters of the film decrease quickly with the increase of the thickness but tend to be constant when the thickness is above 30 nm. Meanwhile, the variations of magnetic properties along in-plane and out-of-plane directions would also decline at first and they then remain nearly unchanged. Our work constructs the relationship between nanopillars and magnetic properties inside films. We are able to clearly reveal the effects of inhomogeneous strain relaxation.展开更多
Nanostructure photodetectors,as the core component of optoelectronic devices,are mainly focused on the precise preparation of mixed-component nano-heterostructures and the realization of zero power consumption devices...Nanostructure photodetectors,as the core component of optoelectronic devices,are mainly focused on the precise preparation of mixed-component nano-heterostructures and the realization of zero power consumption devices.Herein,we successfully fabricated n-GaN/p-ZnTe core/shell nanopillar array and realized self-power ultraviolet/violet photodetection.The radial heterojunction nanodevice reveals high light-dark current ratio of 104 at 0 V bias,indicating effective carriers’separation.And more,by integrating plasmonic effect,the responsivity and detectivity of the Au nanoparticles decorated device are increased from 3.85 to 148.83 mA/W and 4.45×1011 to 2.33×1012 Jones under 325 nm UV light irradiation.While the rise and the fall time are decreased 1.3 times and 6.8 times under 520 nm visible light irradiation at 0 V bias.The high photocurrent gain is derived from that the oscillating high-energy hot electrons in Au nanoparticles spontaneously inject into the ZnTe conduction band to involve the photodetection process.This work presents an effective route to prepare high-performance self-power photodetector and provides a promising blueprint to realize different functional photoelectronic devices based on core/shell nanostructure.展开更多
Inspired by the increasing demand for energy-storage capacitors in electrical and electronic systems, dielectrics with high energy-storage performance have attracted more and more attention. AgNbO_(3) -based lead-free...Inspired by the increasing demand for energy-storage capacitors in electrical and electronic systems, dielectrics with high energy-storage performance have attracted more and more attention. AgNbO_(3) -based lead-free ceramics serve as one of the most promising environmental-friendly candidates. However, their energy storage optimization is seriously limited by the low breakdown strength. Fortunately, thin film as a form of AgNbO3 materials can effectively improve the breakdown strength. In this work, AgNbO_(3)film with ∼550 nm in thickness was deposited on SrRuO_(3 )/(001)SrTiO_(3) using pulsed laser deposition. The AgNbO_(3) film reveals typical relaxor ferroelectric hysteresis loops due to the new nanopillar structure, which contributes to high breakdown strength of up to 1200 kV cm^(-1) . Benefiting from the high breakdown strength, a recoverable energy storage density of 10.3 J cm^(-3) and an energy efficiency of 72.2% are obtained in the AgNbO_(3) film, which demonstrates the promising prospect of AgNbO_(3) film for energy storage applications.展开更多
Tensile tests were performed on iron nanopillars oriented along [001] and [110] directions at a constant temperature of 300 K through molecular dynamics simulations with an embedded-atom interatomic potential for iron...Tensile tests were performed on iron nanopillars oriented along [001] and [110] directions at a constant temperature of 300 K through molecular dynamics simulations with an embedded-atom interatomic potential for iron. The nanopillars were stretched until yielding to investigate the onset of their plastic deformation behaviors. Yielding was found to occur through two different mechanisms for [001] and [110] tensions. In the former case, plastic deformation is initiated by dislocation nucleation at the edges of the nanopillar, whereas in the latter case by phase transformation inside the nanopillar. The details during the onset of plastic deformation under the two different orientations were analyzed. The varying mechanisms during plastic deformation initiation are bound to influence the mechanical behavior of such nanoscale materials, especially those strongly textured.展开更多
All-inorganic perovskite solar cells suffer from low performance due to unsatisfactory carrier transport and light harvesting efficiency.Semiconductor nanopillar arrays can reduce light reflection loss and suppress ex...All-inorganic perovskite solar cells suffer from low performance due to unsatisfactory carrier transport and light harvesting efficiency.Semiconductor nanopillar arrays can reduce light reflection loss and suppress exciton recombination dynamics in optoelectronic devices.In all-inorganic perovskite solar cells,few studies employing TiO_(2)nanopillar arrays(TiO_(2)NaPAs)have been reported to improve the device performance.Herein,well-arranged TiO_(2)NaPAs are chosen to enhance the interfacial contact between perovskite and electron transporting layers for improving the carrier transport.Notably,TiO_(2)NaPAs can be directly fabricated on rigid/flexible substrates at roughly room temperature by unique glancing angle deposition,which is more available than high-temperature hydrothermal/solvothermal methods.By embedding TiO_(2)NaPAs into chemical processable CsPbI2Br layers,continuous and intimate films are readily formed,guaranteeing large physical contact for facilitating more effective electron injection and charge separation.The vertically grown TiO_(2)NaPAs also provide a straightforward electron transporting path to electrodes.In addition,TiO_(2)NaPAs can guide the incident light and enhance the light-harvesting ability of CsPbI2Br films.As a result,the solar cell with TiO_(2)NaPAs displays a power conversion efficiency of 11.35%higher than planar control of 10.04%,and exhibits better long-term thermal stability.This strategy provides an opportunity by constructing direct interfacial regulation towards the performance improvement of inorganic perovskite solar cells.展开更多
Gradient wettability is important for some living organisms.Herein,the dynamic responses of water droplets impacting on the surfaces of four regions along the wing vein of cicada Cryptotympana atratafabricius are inve...Gradient wettability is important for some living organisms.Herein,the dynamic responses of water droplets impacting on the surfaces of four regions along the wing vein of cicada Cryptotympana atratafabricius are investigated.It is revealed that a gradient wetting behavior from hydrophilicity(the Wenzel state)to hydrophobicity and further to superhydrophobicity(the Cassie-Baxter state)appears from the foot to apex of the wing.Water droplets impacting on the hydrophilic region of the wing cannot rebound,whereas those impacting on the hydrophobic region can retract and completely rebound.The hydrophobic region exhibits robust water-repelling performance during the dynamic droplet impact.Moreover,a droplet sitting on the hydrophobic region can recover its spherical shape after squeezed to a water film as thin as 0.45 mm,and lossless droplet transportation can be achieved at the region.Based on the geometric parameters of the nanopillars at the hydrophilic and hydrophobic regions on the cicada wing,two wetting models are developed for elucidating the mechanism for the gradient wetting behavior.This work directs the design and fabrication of surfaces with gradient wetting behavior by mimicking the nanopillars on cicada wing surface.展开更多
In this study,by using the nonequilibrium molecular dynamics and the kinetic theory,we examine the tailored nanoscale thermal transport via a gas-filled nanogap structure with mechanically-controllable nanopillars in ...In this study,by using the nonequilibrium molecular dynamics and the kinetic theory,we examine the tailored nanoscale thermal transport via a gas-filled nanogap structure with mechanically-controllable nanopillars in one surface only,i.e.,changing nanopillar height.It is found that both the thermal rectification and negative differential thermal resistance(NDTR)effects can be substantially enhanced by controlling the nanopillar height.The maximum thermal rectification ratio can reach 340%and the△T range with NDTR can be significantly enlarged,which can be attributed to the tailored asymmetric thermal resistance via controlled adsorption in height-changing nanopillars,especially at a large temperature difference.These tunable thermal rectification and NDTR mechanisms provide insights for the design of thermal management systems.展开更多
Uniform GaN nanopillar arrays have been successfully fabricated by inductively coupled plasma etching using self-organized nickel nano-islands as the masks on GaN/sapphire. GaN nanopillars with diameters of 350 nm and...Uniform GaN nanopillar arrays have been successfully fabricated by inductively coupled plasma etching using self-organized nickel nano-islands as the masks on GaN/sapphire. GaN nanopillars with diameters of 350 nm and densities of 2.6 × 10^8 cm^-2 were demonstrated and controlled by the thickness of Ni film and the NH3 annealing time. These GaN nanopillars show improved optical properties and strain change compared to that of GaN film before ICP etching. Such structures with large-area uniformity and high density could provide additional advantages for light emission of light-emitting diodes, quality improvement of ELO regrowth, etc.展开更多
Zinc oxide (ZnO) nanopillars on a ZnO seed layer and ZnO nanoflowers were synthesized by electrochemical deposition on linear wires. The morphologies and crystal orientation of the ZnO nanostructures were investigat...Zinc oxide (ZnO) nanopillars on a ZnO seed layer and ZnO nanoflowers were synthesized by electrochemical deposition on linear wires. The morphologies and crystal orientation of the ZnO nanostructures were investigated by a scanning electron microscopy and an X-ray diffraction pattern, respectively. Detailed study on the field-emission properties of ZnO nanostructures indicates that nanopillars with a high aspect ratio show good performance with a low turn-on field of 0.16 V/#m and a high field enhancement factor of 2.86 x 104. A luminescent tube with ZnO nanopillars on a linear wire cathode and a transparent anode could reach a luminance of about 1.5 x l04 cd/m2 under an applied voltage of 4 kV.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No.52076080)the Natural Science Foundation of Hebei Province of China (Grant No.E2020502011)。
文摘The combination of different nanostructures can hinder phonons transmission in a wide frequency range and further reduce the thermal conductivity(TC).This will benefit the improvement and application of thermoelectric conversion,insulating materials and thermal barrier coatings,etc.In this work,the effects of nanopillars and Ge nanoparticles(GNPs)on the thermal transport of Si nanowire(SN)are investigated by nonequilibrium molecular dynamics(NEMD)simulation.By analyzing phonons transport behaviors,it is confirmed that the introduction of nanopillars leads to the occurrence of lowfrequency phonons resonance,and nanoparticles enhance high-frequency phonons interface scattering and localization.The results show that phonons transport in the whole frequency range can be strongly hindered by the simultaneous introduction of nanopillars and nanoparticles.In addition,the effects of system length,temperature,sizes and numbers of nanoparticles on the TC are investigated.Our work provides useful insights into the effective regulation of the TC of nanomaterials.
基金supported by the Major State Basic Research Programme of China(Grant No.2007CB613404)the National Natural Science Foundation of China(Grant Nos.60906035,61036001,61036003,and 51072194)the Knowledge Innovation Program of the Chinese Academy of Sciences(Grant No.ISCAS2009T01)
文摘Well-aligned and closely-packed silicon nanopillar (SNP) arrays are fabricated by using a simple method with magnetron sputtering of Si on a porous anodic alumina (PAA) template at room temperature. The SNPs are formed by selective growth on the top of the PAA pore walls. The growth mechanism analysis indicates that the structure of the SNPs can be modulated by the pore spacing of the PAA and the sputtering process and is independent of the wall width of the PAA. Moreover, nanocrystals are identified by using transmission electron microscopy in the as-deposited SNP samples, which are related to the heat isolation structure of the SNPs. The Raman focus depth profile reveals a high crystallization ratio on the surface.
基金supported by the National Natural Science Foundation of China(Grant No.50972144)
文摘Silicon nanopillars are fabricated by inductively coupled plasma (ICP) dry etching with the cesium chloride (CsCl) islands as masks originally from self-assembly. Wafers with nanopillar texture or planar surface are subjected to phosphorus (P) diffusion by liquid dopant source (POCl3) at 870 ℃ to form P-N junctions with a depth of 300 nm. The X-ray photoelectron spectroscopy (XPS) is used to measure the Si 2p core levels of P-N junction wafer with nanopillar texture and planar surface. With a visible light excitation, the P-N junction produces a new electric potential for photoelectric characteristic, which causes the Si 2p core level to have a energy shift compared with the spectrum without the visible light. The energy shift of the Si 2p core level is -0.27 eV for the planar P-N junction and -0.18 eV for the nanopillar one. The difference in Si 2p energy shift is due to more space lattice defects and chemical bond breaks for nanopillar compared with the planar one.
基金Project supported by the Program for Changjiang Scholar and Innovation Research Team in Universities of China(Grant No.IRT0972)the International Science&Technology Cooperation Program of China(Grant No.2012DFR50460)+1 种基金the National Natural Scientific Foundation of China(Grant Nos.21071108,60976018,21101111,61274056,and 61205179)the Key Innovative Research Team in Science and Technology of Shangxi Province,China(Grant No.2012041011)
文摘We have investigated the properties of organic light emitting diodes (OLEDs) with a nanopillar patterning structure at organic-metal or organic-organic interfaces. The results demonstrate that the introduction of a nanopillar structure can improve the light extraction efficiency greatly. We also find that the number, height, and position of nanopillars all affect the light extraction of OLEDs. The maximum power efficiency of a device with an optimized nanopillar patterning mode can be improved to 2.47 times that of the reference device. This enhancement in light extraction originates from the improved injected carriers, the broadened charge recombination zone, and the intensified wave guiding effects.
基金supported by the Special Funds for Major State Basic Research Project of China(Grant No.2011CB301900)the High Technology Research Program of China(Grant No.2009AA03A198)+2 种基金the National Natural Science Foundation of China(Grant Nos.60990311,60721063,60906025,60936004,60731160628,and 60820106003)the Natural Science Foundation of Jiangsu Province,China(Grant Nos.BK2008019,BK2010385,BK2009255,and BK2010178)the Research Funds from Nanjing University Yangzhou Institute of Opto-electronics,China
文摘The quest for higher modulation speed and lower energy consumption has inevitably promoted the rapid development of semiconductor-based solid lighting devices in recent years. GaN-based light-emitting diodes (LEDs) have emerged as promising candidates for achieving high efficiency and high intensity, and have received increasing attention among many researchers in this field. In this paper, we use a self-assembled array-patterned mask to fabricate InGaN/GaN multi- quantum well (MQW) LEDs with the intention of enhancing the light-emitting efficiency. By utilizing inductively coupled plasma etching with a self-assembled Ni cluster as the mask, nanopillar arrays are formed on the surface of the InGaN/GaN MQWs. We then observe the structure of the nanopillars and find that the V-defects on the surface of the conventional structure and the negative effects of threading dislocation are effectively reduced. Simultaneously, we make a comparison of the photoluminescence (PL) spectrum between the conventional structure and the nanopillar arrays, achieved under an experimental set-up with an excitation wavelength of 325 mm. The analysis demonstrates that MQW-LEDs with nanopillar arrays achieve a PL intensity 2.7 times that of conventional LEDs. In response to the PL spectrum, some reasons are proposed for the enhancement in the light-emitting efficiency as follows: 1) the improvement in crystal quality, namely the reduction in V-defects; 2) the roughened surface effect on the expansion of the critical angle and the attenuated total reflection; and 3) the enhancement of the light-extraction efficiency due to forward scattering by surface plasmon polariton modes in Ni particles deposited above the p-type GaN layer at the top of the nanopillars.
基金the National Key Research and Development Program of China under Grant Nos 2017YFA206303 and 2016YFB0700901the National Natural Science Foundation of China under Grant Nos 51731001,51371009 and 51271004
文摘To investigate the process of strain relaxation and resultant variation of microstructure and magnetic properties,low-doped La_(0.825)Sr_(0.175)MnO_3 epitaxial films with different thicknesses are deposited on LaAlO_3 substrates and strain induced nanopillars are discovered inside the La_(0.825) Sr_(0.175)MnO_3 film. Perpendicular oriented nanopillars mainly exist below 30 nm and tend to disappear above 30 nm. The distribution of nanopillars not only induce the variation of lattice parameters and local structural distortion but also lead to the deviation of easy magnetization axis from the perpendicular direction. Specifically, the out-of-plane lattice parameters of the film decrease quickly with the increase of the thickness but tend to be constant when the thickness is above 30 nm. Meanwhile, the variations of magnetic properties along in-plane and out-of-plane directions would also decline at first and they then remain nearly unchanged. Our work constructs the relationship between nanopillars and magnetic properties inside films. We are able to clearly reveal the effects of inhomogeneous strain relaxation.
基金the National Natural Science Foundation of China(Nos.62075041,62375049,and 62335003)the Basic Research Program of Jiangsu Province(No.BK20222007).
文摘Nanostructure photodetectors,as the core component of optoelectronic devices,are mainly focused on the precise preparation of mixed-component nano-heterostructures and the realization of zero power consumption devices.Herein,we successfully fabricated n-GaN/p-ZnTe core/shell nanopillar array and realized self-power ultraviolet/violet photodetection.The radial heterojunction nanodevice reveals high light-dark current ratio of 104 at 0 V bias,indicating effective carriers’separation.And more,by integrating plasmonic effect,the responsivity and detectivity of the Au nanoparticles decorated device are increased from 3.85 to 148.83 mA/W and 4.45×1011 to 2.33×1012 Jones under 325 nm UV light irradiation.While the rise and the fall time are decreased 1.3 times and 6.8 times under 520 nm visible light irradiation at 0 V bias.The high photocurrent gain is derived from that the oscillating high-energy hot electrons in Au nanoparticles spontaneously inject into the ZnTe conduction band to involve the photodetection process.This work presents an effective route to prepare high-performance self-power photodetector and provides a promising blueprint to realize different functional photoelectronic devices based on core/shell nanostructure.
基金supported by the Natural Science Foundation of Hebei Province,China(No.E2021201044)the National Natural Science Foundation of China(Nos.51802068 and 52073144)+3 种基金the Natural Science Foundation of Jiangsu Province,China(No.BK20201301)State Key Laboratory of New Ceramic and Fine Processing Tsinghua University(No.KF202114)the Research Fund of State Key Laboratory of Mechanics and Control of Mechani-cal Structures(Nanjing University of Aeronautics and Astronautics)(No.MCMS-I-0522G02)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD).
文摘Inspired by the increasing demand for energy-storage capacitors in electrical and electronic systems, dielectrics with high energy-storage performance have attracted more and more attention. AgNbO_(3) -based lead-free ceramics serve as one of the most promising environmental-friendly candidates. However, their energy storage optimization is seriously limited by the low breakdown strength. Fortunately, thin film as a form of AgNbO3 materials can effectively improve the breakdown strength. In this work, AgNbO_(3)film with ∼550 nm in thickness was deposited on SrRuO_(3 )/(001)SrTiO_(3) using pulsed laser deposition. The AgNbO_(3) film reveals typical relaxor ferroelectric hysteresis loops due to the new nanopillar structure, which contributes to high breakdown strength of up to 1200 kV cm^(-1) . Benefiting from the high breakdown strength, a recoverable energy storage density of 10.3 J cm^(-3) and an energy efficiency of 72.2% are obtained in the AgNbO_(3) film, which demonstrates the promising prospect of AgNbO_(3) film for energy storage applications.
文摘Tensile tests were performed on iron nanopillars oriented along [001] and [110] directions at a constant temperature of 300 K through molecular dynamics simulations with an embedded-atom interatomic potential for iron. The nanopillars were stretched until yielding to investigate the onset of their plastic deformation behaviors. Yielding was found to occur through two different mechanisms for [001] and [110] tensions. In the former case, plastic deformation is initiated by dislocation nucleation at the edges of the nanopillar, whereas in the latter case by phase transformation inside the nanopillar. The details during the onset of plastic deformation under the two different orientations were analyzed. The varying mechanisms during plastic deformation initiation are bound to influence the mechanical behavior of such nanoscale materials, especially those strongly textured.
基金This work was supported by the National Natural Science Foundation of China(Nos.21971172 and 21671141)the National Natural Science Foundation of Jiangsu Province(No.BK20191425)+1 种基金the Priority Academic Program Development(PAPD)of Jiangsu Higher Education Institutions for Optical EngineeringJiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering(No.SKLPST201902).
文摘All-inorganic perovskite solar cells suffer from low performance due to unsatisfactory carrier transport and light harvesting efficiency.Semiconductor nanopillar arrays can reduce light reflection loss and suppress exciton recombination dynamics in optoelectronic devices.In all-inorganic perovskite solar cells,few studies employing TiO_(2)nanopillar arrays(TiO_(2)NaPAs)have been reported to improve the device performance.Herein,well-arranged TiO_(2)NaPAs are chosen to enhance the interfacial contact between perovskite and electron transporting layers for improving the carrier transport.Notably,TiO_(2)NaPAs can be directly fabricated on rigid/flexible substrates at roughly room temperature by unique glancing angle deposition,which is more available than high-temperature hydrothermal/solvothermal methods.By embedding TiO_(2)NaPAs into chemical processable CsPbI2Br layers,continuous and intimate films are readily formed,guaranteeing large physical contact for facilitating more effective electron injection and charge separation.The vertically grown TiO_(2)NaPAs also provide a straightforward electron transporting path to electrodes.In addition,TiO_(2)NaPAs can guide the incident light and enhance the light-harvesting ability of CsPbI2Br films.As a result,the solar cell with TiO_(2)NaPAs displays a power conversion efficiency of 11.35%higher than planar control of 10.04%,and exhibits better long-term thermal stability.This strategy provides an opportunity by constructing direct interfacial regulation towards the performance improvement of inorganic perovskite solar cells.
基金Financial support provided by the National Natural Science Foundation of China(Grant No.51533003)the Natural Science Foundation of Guangdong Province(Grant No.2016A030308018)+1 种基金the Guangzhou Municipal Science and Technology Project(Grant No.201807010088)the Opening Project(KFKT1805)of Key Laboratory of Polymer Processing Engineering(Ministry of Education)are gratefully acknowledged.
文摘Gradient wettability is important for some living organisms.Herein,the dynamic responses of water droplets impacting on the surfaces of four regions along the wing vein of cicada Cryptotympana atratafabricius are investigated.It is revealed that a gradient wetting behavior from hydrophilicity(the Wenzel state)to hydrophobicity and further to superhydrophobicity(the Cassie-Baxter state)appears from the foot to apex of the wing.Water droplets impacting on the hydrophilic region of the wing cannot rebound,whereas those impacting on the hydrophobic region can retract and completely rebound.The hydrophobic region exhibits robust water-repelling performance during the dynamic droplet impact.Moreover,a droplet sitting on the hydrophobic region can recover its spherical shape after squeezed to a water film as thin as 0.45 mm,and lossless droplet transportation can be achieved at the region.Based on the geometric parameters of the nanopillars at the hydrophilic and hydrophobic regions on the cicada wing,two wetting models are developed for elucidating the mechanism for the gradient wetting behavior.This work directs the design and fabrication of surfaces with gradient wetting behavior by mimicking the nanopillars on cicada wing surface.
基金the National Natural Science Foundation of China(grants Nos.51976002 and 51776007)Beijing Nova Program of Science and Technology(No.Z191100001119033)the Young Talent Project of Beijing Municipal Education Committee(No.CIT&TCD201904015)。
文摘In this study,by using the nonequilibrium molecular dynamics and the kinetic theory,we examine the tailored nanoscale thermal transport via a gas-filled nanogap structure with mechanically-controllable nanopillars in one surface only,i.e.,changing nanopillar height.It is found that both the thermal rectification and negative differential thermal resistance(NDTR)effects can be substantially enhanced by controlling the nanopillar height.The maximum thermal rectification ratio can reach 340%and the△T range with NDTR can be significantly enlarged,which can be attributed to the tailored asymmetric thermal resistance via controlled adsorption in height-changing nanopillars,especially at a large temperature difference.These tunable thermal rectification and NDTR mechanisms provide insights for the design of thermal management systems.
基金Project supported by the Special Funds for Major State Basic Research Project(Nos.2011CB301900,2012CB619304,2010CB327504)the Hi-Tech Research Project(No.2011AA03A103)+1 种基金the National Natural Science Foundation of China(Nos.60990311,61274003,60936004,61176063)the Natural Science Foundation of Jiangsu Province(No.BK2011010)
文摘Uniform GaN nanopillar arrays have been successfully fabricated by inductively coupled plasma etching using self-organized nickel nano-islands as the masks on GaN/sapphire. GaN nanopillars with diameters of 350 nm and densities of 2.6 × 10^8 cm^-2 were demonstrated and controlled by the thickness of Ni film and the NH3 annealing time. These GaN nanopillars show improved optical properties and strain change compared to that of GaN film before ICP etching. Such structures with large-area uniformity and high density could provide additional advantages for light emission of light-emitting diodes, quality improvement of ELO regrowth, etc.
基金Project supported by the National High Technology Research and Development Program of China(No.2008AA03A313)the National Natural Science Foundation of China(No.61106053)the State Key Laboratory of Electronic Thin Films and Integrated Devices, China(No.KFJJ200916)
文摘Zinc oxide (ZnO) nanopillars on a ZnO seed layer and ZnO nanoflowers were synthesized by electrochemical deposition on linear wires. The morphologies and crystal orientation of the ZnO nanostructures were investigated by a scanning electron microscopy and an X-ray diffraction pattern, respectively. Detailed study on the field-emission properties of ZnO nanostructures indicates that nanopillars with a high aspect ratio show good performance with a low turn-on field of 0.16 V/#m and a high field enhancement factor of 2.86 x 104. A luminescent tube with ZnO nanopillars on a linear wire cathode and a transparent anode could reach a luminance of about 1.5 x l04 cd/m2 under an applied voltage of 4 kV.