利用包含详细微物理动力学机制的NAQPMS+APM(Nested Air Quality Prediction Modeling System with Advanced Particle Microphysics)模式,对北京城市大气2006年1月15日至2月13日期间的粒子数浓度谱分布进行了模拟,模式模拟结果合理,能...利用包含详细微物理动力学机制的NAQPMS+APM(Nested Air Quality Prediction Modeling System with Advanced Particle Microphysics)模式,对北京城市大气2006年1月15日至2月13日期间的粒子数浓度谱分布进行了模拟,模式模拟结果合理,能够很好地再现北京城市大气细粒子的数浓度谱分布演变特征。分析表明,北京冬季大气新粒子形成事件频发,核化作用使核模态粒子数浓度急剧升高;污染累积时,积聚模态粒子数浓度显著增大,而核模态粒子数浓度很小,粒子谱分布向大粒子端移动;重污染期间,粒子微物理混合作用强烈,二次成分在一次粒子上的附着使一次粒子粒径显著增大,二次成分可使一次粒子粒径增大50%以上,积聚模态的二次粒子与一次粒子共同促进了污染的形成。在北京及其近周边区域,北京南部和河北南部一次粒子数量多,占据主导地位,而在河北北部二次粒子则占主导地位。展开更多
利用观测资料和嵌套网格空气质量模式(Nested Air Quality Prediction Model System,NAQPMS)模拟研究了2010年7月26日—8月26日上海市及周边城市PM10、PM2.5及其无机盐组分的浓度变化趋势及时空分布特点.结果表明,NAQPMS模式较为合理...利用观测资料和嵌套网格空气质量模式(Nested Air Quality Prediction Model System,NAQPMS)模拟研究了2010年7月26日—8月26日上海市及周边城市PM10、PM2.5及其无机盐组分的浓度变化趋势及时空分布特点.结果表明,NAQPMS模式较为合理的重现了上海各方位站点及其周边城市PM10、PM2.5及其硫酸盐、硝酸盐等无机化学组分的浓度水平与变化趋势,相关系数在0.7以上.研究期间造成上海颗粒物污染的主要原因是:弱气旋低压系统控制下,西南或西北气流将内陆污染物输送至上海市,当低压中心移至上海附近时带来的辐合气流使得污染进一步累积上升.长三角地区PM2.5主要无机盐组分分布特征表明,上海市及周边城市的硫酸盐、硝酸盐和铵盐的总和占PM2.5浓度的40%~60%,二次气-粒转化过程贡献明显,且以SO2向SO2-4的氧化转换为主;污染上升过程中NO-3/SO2-4比率增大,说明流动源的贡献有所增加.展开更多
利用WRF模式(The Weather Research and Forecasting Model)和嵌套网格空气质量模式(NAQPMS)对2016年11月发生在京津冀地区一次PM_(2.5)污染事件进行模拟研究并分析污染过程中的天气形势变化.结果表明,均压场、低空逆温层和偏南暖湿气...利用WRF模式(The Weather Research and Forecasting Model)和嵌套网格空气质量模式(NAQPMS)对2016年11月发生在京津冀地区一次PM_(2.5)污染事件进行模拟研究并分析污染过程中的天气形势变化.结果表明,均压场、低空逆温层和偏南暖湿气流输送的存在为北京地区PM_(2.5)形成提供了有利条件,NAQPMS模式能够合理的再现北京大气污染物时空变化,细颗粒物PM_(2.5)和可吸入颗粒物PM_(10)模拟与观测数据相关系数达0.71,模拟数据在观测数据两倍范围内占比(FAC2)达65%.源解析结果表明,在不考虑临时实施减控措施下,11月18日区域外输送对北京PM_(2.5)浓度贡献为55.25%,区域内输送贡献为44.75%,北京东北区域PM_(2.5)外地源主要为河北中部、河北南部、天津和山东,所占贡献为9.67%、9.01%、7.90%和7.99%.污染物主要来源为生活源、交通源和工业源,分别占比39.6%、34.6%和20.0%.而实际上北京在唐山、保定采取一系列控制措施后仍在研究时段内出现高PM_(2.5)浓度,意味着在同样天气形势下需要对河北中部、河北南部、天津和山东等浓度贡献占比大的城市加强减排管控才能有效减缓高PM_(2.5)浓度的出现.展开更多
文摘利用包含详细微物理动力学机制的NAQPMS+APM(Nested Air Quality Prediction Modeling System with Advanced Particle Microphysics)模式,对北京城市大气2006年1月15日至2月13日期间的粒子数浓度谱分布进行了模拟,模式模拟结果合理,能够很好地再现北京城市大气细粒子的数浓度谱分布演变特征。分析表明,北京冬季大气新粒子形成事件频发,核化作用使核模态粒子数浓度急剧升高;污染累积时,积聚模态粒子数浓度显著增大,而核模态粒子数浓度很小,粒子谱分布向大粒子端移动;重污染期间,粒子微物理混合作用强烈,二次成分在一次粒子上的附着使一次粒子粒径显著增大,二次成分可使一次粒子粒径增大50%以上,积聚模态的二次粒子与一次粒子共同促进了污染的形成。在北京及其近周边区域,北京南部和河北南部一次粒子数量多,占据主导地位,而在河北北部二次粒子则占主导地位。
文摘利用观测资料和嵌套网格空气质量模式(Nested Air Quality Prediction Model System,NAQPMS)模拟研究了2010年7月26日—8月26日上海市及周边城市PM10、PM2.5及其无机盐组分的浓度变化趋势及时空分布特点.结果表明,NAQPMS模式较为合理的重现了上海各方位站点及其周边城市PM10、PM2.5及其硫酸盐、硝酸盐等无机化学组分的浓度水平与变化趋势,相关系数在0.7以上.研究期间造成上海颗粒物污染的主要原因是:弱气旋低压系统控制下,西南或西北气流将内陆污染物输送至上海市,当低压中心移至上海附近时带来的辐合气流使得污染进一步累积上升.长三角地区PM2.5主要无机盐组分分布特征表明,上海市及周边城市的硫酸盐、硝酸盐和铵盐的总和占PM2.5浓度的40%~60%,二次气-粒转化过程贡献明显,且以SO2向SO2-4的氧化转换为主;污染上升过程中NO-3/SO2-4比率增大,说明流动源的贡献有所增加.
文摘利用WRF模式(The Weather Research and Forecasting Model)和嵌套网格空气质量模式(NAQPMS)对2016年11月发生在京津冀地区一次PM_(2.5)污染事件进行模拟研究并分析污染过程中的天气形势变化.结果表明,均压场、低空逆温层和偏南暖湿气流输送的存在为北京地区PM_(2.5)形成提供了有利条件,NAQPMS模式能够合理的再现北京大气污染物时空变化,细颗粒物PM_(2.5)和可吸入颗粒物PM_(10)模拟与观测数据相关系数达0.71,模拟数据在观测数据两倍范围内占比(FAC2)达65%.源解析结果表明,在不考虑临时实施减控措施下,11月18日区域外输送对北京PM_(2.5)浓度贡献为55.25%,区域内输送贡献为44.75%,北京东北区域PM_(2.5)外地源主要为河北中部、河北南部、天津和山东,所占贡献为9.67%、9.01%、7.90%和7.99%.污染物主要来源为生活源、交通源和工业源,分别占比39.6%、34.6%和20.0%.而实际上北京在唐山、保定采取一系列控制措施后仍在研究时段内出现高PM_(2.5)浓度,意味着在同样天气形势下需要对河北中部、河北南部、天津和山东等浓度贡献占比大的城市加强减排管控才能有效减缓高PM_(2.5)浓度的出现.