期刊文献+
共找到261篇文章
< 1 2 14 >
每页显示 20 50 100
基于非线性自回归神经网络模型对生活垃圾产生量的预测
1
作者 朱远超 王晓燕 田光 《四川环境》 2024年第3期149-153,共5页
旨在建立生活垃圾产生量预测模型,更好的预测生活垃圾产生量,以便有序筹划生活垃圾处置设施和构建灵活的收运调配体系。方法采用非线性自回归神经网络(NAR),通过调整延迟阶数和隐含层神经元个数等模型参数,建立基于生活垃圾产生量的历... 旨在建立生活垃圾产生量预测模型,更好的预测生活垃圾产生量,以便有序筹划生活垃圾处置设施和构建灵活的收运调配体系。方法采用非线性自回归神经网络(NAR),通过调整延迟阶数和隐含层神经元个数等模型参数,建立基于生活垃圾产生量的历史时间序列预测模型。实验结果显示,NAR神经网络时间序列模型对于北京市生活垃圾产生量有较好的预测能力,当延迟阶数为5,隐含神经元个数为10时,预测模型测试集的r值为0.9717,平均绝对百分比误差为3.385%,均方根误差为5051.831 t/w,预测模型通过了残差序列非自相关检验,预测效果较好。结论表明针对生活垃圾产生量数据可以开展NAR神经网络模型非线性自回归预测,且可不用考虑其它相关影响因素数据的可获得性,具有一定的便利和实际应用意义。 展开更多
关键词 生活垃圾 预测模型 非线性自回归 神经网络
下载PDF
基于多元非线性回归和BP神经网络模型对黄河水沙监测数据特征分析的比较
2
作者 孔豪杰 《浙江工商职业技术学院学报》 2024年第1期18-22,共5页
利用2016-2021年黄河水位、水流量和含沙量已有的历史数据,采用三次样条插值方法,可建立多元非线性回归和BP神经网络模型。比较两种模型的误差率,进而得到BP神经网络预测精度更高(平均误差率:0.1981)。这为预测含沙量提供可靠的依据,也... 利用2016-2021年黄河水位、水流量和含沙量已有的历史数据,采用三次样条插值方法,可建立多元非线性回归和BP神经网络模型。比较两种模型的误差率,进而得到BP神经网络预测精度更高(平均误差率:0.1981)。这为预测含沙量提供可靠的依据,也为监管机关制定合理有效的检测方案提供了有力的支持。 展开更多
关键词 三次样条插值 多元非线性回归 BP神经网络 误差率
下载PDF
基于改进非线性自回归网络的洪水预测算法 被引量:3
3
作者 崔雅博 罗清元 刘丽娜 《沈阳工业大学学报》 CAS 北大核心 2023年第1期84-89,共6页
针对流域的洪水预测具有高度非线性和随机性的问题,提出了一种混合预测模型用于流域的洪水预测.该模型是一个集成了数据预处理模块的具有外部输入的非线性自回归神经网络,采用小波变换进行时间序列分解,利用多基因遗传编程进行细节缩放... 针对流域的洪水预测具有高度非线性和随机性的问题,提出了一种混合预测模型用于流域的洪水预测.该模型是一个集成了数据预处理模块的具有外部输入的非线性自回归神经网络,采用小波变换进行时间序列分解,利用多基因遗传编程进行细节缩放,以提高时域和频域特性的提取能力,进一步捕获时间序列的非平稳性,与NARX结合可以大幅提高洪水预测的准确性,利用栾川水文站15年中所测水文数据对所提模型进行验证和测试.实验结果表明,相比较于传统算法和其他预测算法,所提出的算法具有更高的预测准确度和性能,可广泛应用在洪水预测等领域. 展开更多
关键词 洪水预测 非线性自回归网络 混合预测模型 小波变换 多基因遗传编程 数据预处理 机器学习 神经网络
下载PDF
基于人工神经网络及非线性回归的岩爆判据 被引量:14
4
作者 张光存 高谦 +1 位作者 杜聚强 李铿铿 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第7期2977-2981,共5页
采用人工神经网络和非线性回归方法研究岩爆判据研究。首先利用人工神经网络对原始样本进行量化,然后对量化后的样本数据进行非线性回归分析,获得新的岩爆判据公式。研究结果表明:此岩爆判据公式具有较高的预测精度。
关键词 岩爆判据 人工神经网络 岩爆强度衡量值 非线性回归
下载PDF
基于泛函网络的非线性回归预测模型及学习算法 被引量:4
5
作者 何登旭 李艳芳 +1 位作者 刘向虎 周永权 《计算机工程与应用》 CSCD 北大核心 2008年第24期74-77,共4页
在非线性回归预测中,预测函数的拟合是其难点和关键,直接影响预测精度。当系统非线性较强时,传统方法不易于处理,拟合和预测结果不理想。泛函网络是最近提出的一种对神经网络的有效推广,在处理非线性问题时有一定的优势。为此提出了基... 在非线性回归预测中,预测函数的拟合是其难点和关键,直接影响预测精度。当系统非线性较强时,传统方法不易于处理,拟合和预测结果不理想。泛函网络是最近提出的一种对神经网络的有效推广,在处理非线性问题时有一定的优势。为此提出了基于泛函网络的非线性回归预测模型和相应的学习算法。并分别就一元非线性回归预测和多元非线性回归预测给出了相应的实例。计算机仿真结果表明,泛函网络预测模型拟合度和预测精度都明显高于某些传统的方法,有较好的理论和应用价值。 展开更多
关键词 泛函网络 非线性回归 预测 学习算法
下载PDF
基于多层局部回归神经网络的多变量非线性系统预测控制 被引量:13
6
作者 刘贺平 张兰玲 孙一康 《控制理论与应用》 EI CAS CSCD 北大核心 2001年第2期298-300,共3页
以罐式搅拌反应器为例 ,针对复杂多变量系统的强耦合性、非线性、时变性等问题 ,研究了多变量非线性系统的预测控制及改善控制性能的方法 .采用多层局部回归神经网络离线建立预测模型 ,以偏差补偿和模型修正相结合的方式对预测模型进行... 以罐式搅拌反应器为例 ,针对复杂多变量系统的强耦合性、非线性、时变性等问题 ,研究了多变量非线性系统的预测控制及改善控制性能的方法 .采用多层局部回归神经网络离线建立预测模型 ,以偏差补偿和模型修正相结合的方式对预测模型进行误差补偿 ,经在线校正用于预测控制 .通过对性能指标中的偏差项负指数加权 ,进一步改善预测控制性能 .仿真结果表明了控制算法的有效性 . 展开更多
关键词 多变量非线性系统 多层局部回归神经网络 预测控制 模型修正
下载PDF
基于人工神经网络的非线性回归 被引量:16
7
作者 王宜怀 王林 《计算机工程与应用》 CSCD 北大核心 2004年第12期79-82,共4页
探讨了人工神经网络在回归分析领域应用的理论基础,对基于人工神经网络的非线性回归进行了深入的实践分析。以BP网络为例给出了基于人工神经网络的非线性回归实例分析。结果表明利用人工神经网络进行非线性回归是一种良好的数据回归方法... 探讨了人工神经网络在回归分析领域应用的理论基础,对基于人工神经网络的非线性回归进行了深入的实践分析。以BP网络为例给出了基于人工神经网络的非线性回归实例分析。结果表明利用人工神经网络进行非线性回归是一种良好的数据回归方法,可以方便地应用于解决非线性回归问题。 展开更多
关键词 人工神经网络 非线性回归 理论基础 实践分析
下载PDF
广义回归神经网络在非线性系统建模中的应用 被引量:24
8
作者 周敏 李世玲 《计算机测量与控制》 CSCD 2007年第9期1189-1191,共3页
广义回归神经网络具有设计简单、收敛快等优势,因此在复杂非线性系统建模中得到了广泛应用;在简要介绍了广义回归神经网络的结构和算法的基础上,基于广义回归神经网络和均匀设计理论,提出了一种新的非线性系统稳健建模方法,并给出了仿... 广义回归神经网络具有设计简单、收敛快等优势,因此在复杂非线性系统建模中得到了广泛应用;在简要介绍了广义回归神经网络的结构和算法的基础上,基于广义回归神经网络和均匀设计理论,提出了一种新的非线性系统稳健建模方法,并给出了仿真算例;仿真结果表明,用文中提出的方法建立非线性系统预测模型,具有预测结果稳定、模型稳健性好等优点。 展开更多
关键词 广义回归神经网络 均匀设计 非线性系统 建模 稳健性
下载PDF
基于广义回归神经网络的传感器非线性误差校正 被引量:7
9
作者 段松杰 张晓光 张闯志 《传感器与微系统》 CSCD 北大核心 2008年第12期14-16,共3页
介绍了径向基函数网络的函数逼近原理和方法,提出了一种基于广义回归神经网络(GRNN)的传感器非线性误差校正方法。通过Matlab的Network Toolbox(神经网络工具箱),GRNN训练程序实现了输出特性曲线逼近。仿真分析表明:GRNN能够很好地满足... 介绍了径向基函数网络的函数逼近原理和方法,提出了一种基于广义回归神经网络(GRNN)的传感器非线性误差校正方法。通过Matlab的Network Toolbox(神经网络工具箱),GRNN训练程序实现了输出特性曲线逼近。仿真分析表明:GRNN能够很好地满足传感器非线性拟合的要求,网络结构简单,收敛速度快。 展开更多
关键词 广义回归神经网络 传感器 非线性误差 径向基函数
下载PDF
基于回归神经网络的非线性时变系统辨识 被引量:9
10
作者 邹高峰 王正欧 《控制与决策》 EI CSCD 北大核心 2002年第5期517-521,共5页
为克服基于前馈神经网络的非线性时变系统辨识算法存在需预先估计系统输入输出滞后阶数的缺陷 ,提出一种基于回归神经网络的非线性时变系统的辨识算法。针对现有的回归网络学习算法大多采用梯度算法 ,收敛速度缓慢问题 ,提出一种具有快... 为克服基于前馈神经网络的非线性时变系统辨识算法存在需预先估计系统输入输出滞后阶数的缺陷 ,提出一种基于回归神经网络的非线性时变系统的辨识算法。针对现有的回归网络学习算法大多采用梯度算法 ,收敛速度缓慢问题 ,提出一种具有快速收敛性的扩展卡尔曼滤波学习算法 ,大大提高了学习收敛速度 ;并推导了一种基于单个神经元的局部化算法 ,减少了计算量。仿真实例证明 ,所提出的算法是有效的。 展开更多
关键词 回归神经网络 非线性时变系统 系统辨识 扩展卡尔曼滤波 人工神经网络
下载PDF
非线性系统自适应回归神经网络控制 被引量:3
11
作者 谭思云 陈文清 周建中 《武汉理工大学学报》 CAS CSCD 2002年第3期18-20,共3页
针对参数不确定非线性系统 ,提出了基于回归神经网络的间接自适应控制律。控制器采用滑模变结构技术 ,能保证系统对外部扰动和参数不确定性的不敏感性 。
关键词 回归网络 滑动模态 不确定性 非线性系统 神经网络 自适应控制
下载PDF
多层局部回归网络的非线性系统预测模型 被引量:2
12
作者 刘贺平 张兰玲 孙一康 《北京科技大学学报》 EI CAS CSCD 北大核心 2000年第2期190-192,共3页
提出采用多层局部回归神经网络建立多变量非线性系统多步预测模型的方法,神经 网络模型可提供多步预测控制所需要的系统输出预测值及输出向量对控制向量的雅可比矩 阵.仿真试验表明这种动态神经网络的预测模型具有较高的精度.
关键词 非线性系统 局部回归网络 神经网络 预测模型
下载PDF
电力需求的非线性回归组合神经网络预测研究 被引量:11
13
作者 汪克亮 杨力 《计算机工程与应用》 CSCD 北大核心 2010年第28期225-227,共3页
电力需求同时具有典型的增长性和季节波动性二重趋势,从而显示出复杂的非线性组合特征。为了提高电力需求的预测精度,提出一种新的预测模型——非线性回归组合神经网络模型。该模型有效兼顾了非线性回归分析和人工神经网络的优点,与其... 电力需求同时具有典型的增长性和季节波动性二重趋势,从而显示出复杂的非线性组合特征。为了提高电力需求的预测精度,提出一种新的预测模型——非线性回归组合神经网络模型。该模型有效兼顾了非线性回归分析和人工神经网络的优点,与其他预测模型进行了比较,该模型明显提高了电力需求预测的精度。仿真实验表明了该模型用于电力需求预测的可行性和有效性。同时,该模型也可以作为其他类似季节型时间序列预测建模的有效工具。 展开更多
关键词 电力需求预测 非线性回归组合神经网络 二重趋势性
下载PDF
一种基于回归神经网络的码本激励非线性预测话音编码算法 被引量:3
14
作者 马霓 韦岗 《通信学报》 EI CSCD 北大核心 2000年第10期31-37,共7页
为改善预测类声码器中长时预测器特性 ,本文引入了一种全连接回归神经网络 (FRNN)非线性预测器并将其应用于话音编码算法中。FRNN在隐层单元不仅有来自自身的反馈 ,也有来自输出单元的反馈 ,因此其预测性能好于常规预测器。将其应用于... 为改善预测类声码器中长时预测器特性 ,本文引入了一种全连接回归神经网络 (FRNN)非线性预测器并将其应用于话音编码算法中。FRNN在隐层单元不仅有来自自身的反馈 ,也有来自输出单元的反馈 ,因此其预测性能好于常规预测器。将其应用于码本激励话音编码系统 (CELP)中 ,可得到较低的传输码率 ,同时亦可改善编码质量。 展开更多
关键词 非线性预测 回归神经网络 话音编码 码本激励
下载PDF
多元非线性回归与BP神经网络在香菇多糖提取工艺研究中的应用 被引量:10
15
作者 朱俊访 李博 聂阳 《海峡药学》 2014年第2期15-17,共3页
目的探讨多元非线性回归与BP神经网络在香菇多糖提取工艺研究中的应用;方法使用香菇多糖提取工艺中提取时间、提取温度、料液比、醇析乙醇量和多糖提取率的实验结果,分别建立多元非线性回归方程和BP神经网络;结果多元非线性回归拟合mse... 目的探讨多元非线性回归与BP神经网络在香菇多糖提取工艺研究中的应用;方法使用香菇多糖提取工艺中提取时间、提取温度、料液比、醇析乙醇量和多糖提取率的实验结果,分别建立多元非线性回归方程和BP神经网络;结果多元非线性回归拟合mse为0.1483,预测误差为1.44%;BP神经网络拟合mse为0.1474,预测误差为1.29%;结论多元非线性回归与BP神经网络均可用于多因素的非线性模型建立。 展开更多
关键词 多元非线性回归 BP神经网络 提取工艺 香菇多糖
下载PDF
基于回归神经网络的非线性舰炮弹道偏差预测 被引量:1
16
作者 马野 戴耀 汪德虎 《弹道学报》 CSCD 北大核心 2002年第3期22-25,31,共5页
提出一种基于回归神经网络及弹道机理模型对非线性弹道系统进行辩识的方法 ,通过观测上升段弹丸飞行轨迹 ,采用混合模型预测弹道的误差规律 ,最后估计出弹着点 ,对系统采用 MATLAB进行仿真 ,结果表明 ,该方法有效可行 .
关键词 回归神经网络 舰炮 弹道偏差 预测 弹道方程 非线性弹道
下载PDF
非线性系统的回归网络辨识(英文) 被引量:5
17
作者 任雪梅 《控制理论与应用》 EI CAS CSCD 北大核心 2001年第6期944-948,957,共6页
针对未知非线性系统的辨识问题 ,本文提出了一种新型的回归网络模型 .证明了该网络模型在一定条件下能够逼近非线性系统的输入输出关系 ,提出了用于训练网络前向连接和反向连接权值的动态反向传播算法 .
关键词 回归网络 动态反向传播算法 系统辨识 非线性系统
下载PDF
基于人工神经网络的非线性回归预测模型的研究 被引量:8
18
作者 高洪深 陶有德 《北方工业大学学报》 1999年第1期68-73,共6页
将人工神经网络引入回归分析过程,探讨了回归分析神经网络的结构和学习算法,研究了基于人工神经网络的模型变量的选择、观测样本的采集和使用等.进行了仿真实验,仿真结果初步显示了神经网络方法能够较好地解决传统的回归方法所面临... 将人工神经网络引入回归分析过程,探讨了回归分析神经网络的结构和学习算法,研究了基于人工神经网络的模型变量的选择、观测样本的采集和使用等.进行了仿真实验,仿真结果初步显示了神经网络方法能够较好地解决传统的回归方法所面临的困难,并具有较高的模型精度. 展开更多
关键词 神经网络 非线性回归 预测模型 参数估计
下载PDF
基于遗传神经网络的漏磁非线性回归分析 被引量:1
19
作者 王群京 鲍晓华 +1 位作者 钱吉吉 倪有源 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2005年第9期1053-1056,共4页
文章针对人工神经网络易陷入局部极小、收敛速度慢的缺点,而遗传算法具有全局寻优的特点,将二者结合起来形成一种遗传神经网络的混合算法;通过实例分析和统计学检验,表明该算法可以运用于爪极发电机漏磁非线性回归分析中,并且遗传神经... 文章针对人工神经网络易陷入局部极小、收敛速度慢的缺点,而遗传算法具有全局寻优的特点,将二者结合起来形成一种遗传神经网络的混合算法;通过实例分析和统计学检验,表明该算法可以运用于爪极发电机漏磁非线性回归分析中,并且遗传神经网络非线性回归是准确和高效的。 展开更多
关键词 人工神经网络 遗传算法 非线性回归 爪极发电机
下载PDF
改进非线性外源自回归网络的潮位实时预测 被引量:2
20
作者 李连博 武文昊 +2 位作者 章文俊 尹建川 朱振宇 《科学技术与工程》 北大核心 2022年第22期9728-9735,共8页
中国海域辽阔,海岸带面积约占全国总面积的13%,在沿海区域的交通运输及经济建设领域,都需要具备精确的潮位数据,因此实现精准快速的潮位预报具有重要的应用价值和实际意义。为了提高潮位预测精度和稳定性,提出了一种基于带外源输入的非... 中国海域辽阔,海岸带面积约占全国总面积的13%,在沿海区域的交通运输及经济建设领域,都需要具备精确的潮位数据,因此实现精准快速的潮位预报具有重要的应用价值和实际意义。为了提高潮位预测精度和稳定性,提出了一种基于带外源输入的非线性自回归(nonlinear auto-regressive exogenous, NARX)神经网络的实时潮位预测方法,并在其基础上做了相应改进。首先采用了模块化潮位预测(modular tide level prediction)方法,将潮汐数据分为天文潮及非天文潮两部分,其次引入滑动时间窗(sliding time window, STW)概念构建出改进的MS-NARX神经网络预测模型。利用美国比斯坎湾(Biscayne bay)的实测潮汐值数据进行潮位预测的仿真试验,并与传统NARX神经网络及自适应粒子群算法优化的基本反向传播(SAPSO-BP)神经网络两种预测方法进行比较,结果表明在MAE、MSE及RMSE三项精度指标测算中,MS-NARX神经网络均为最小,可见其针对数据预测的精度和稳定性均优于SAPSO-BP神经网络和传统NARX神经网络,能够为提高船舶运营效率和保障船舶航行安全提供指导。 展开更多
关键词 非线性外源自回归神经网络 调和分析 SAPSO-BP 潮汐预测
下载PDF
上一页 1 2 14 下一页 到第
使用帮助 返回顶部