为降低智慧教室服务请求响应延迟,提出基于智能桌面虚拟化平台(Operating System Virtualization,OSV)技术的智慧教室管理系统。在系统硬件方面,对触控整合器和QXL设备进行选型与设计;在系统软件方面,应用OSV技术虚拟化设计系统人际交...为降低智慧教室服务请求响应延迟,提出基于智能桌面虚拟化平台(Operating System Virtualization,OSV)技术的智慧教室管理系统。在系统硬件方面,对触控整合器和QXL设备进行选型与设计;在系统软件方面,应用OSV技术虚拟化设计系统人际交互显示界面,利用模糊逻辑技术设计智慧教室管理程序,实现智慧教室的管理。实验证明,设计的系统对于智慧教室管理服务请求的响应平均延迟时间为0.05 s,短于传统系统,能够对智慧教室管理服务做到实时响应。展开更多
In this note we make a test of the open topological string version of the OSV conjecture in the toric Calabi-Yau manifold X = O(-3) → P^2 with background D4-branes wrapped on Lagrangian submanifolds. The Dbrahe par...In this note we make a test of the open topological string version of the OSV conjecture in the toric Calabi-Yau manifold X = O(-3) → P^2 with background D4-branes wrapped on Lagrangian submanifolds. The Dbrahe partition function reduces to an expectation value of some inserted operators of a q-deformed Yang Mills theory living on a chain of P^1 's in the base p2 of X. At large N this partition function can be written as a sum over squares of chiral blocks, which are related to the open topological string amplitudes in the local p2 geometry with branes at both the outer and inner edges of the toric diagram. This is in agreement with the conjecture.展开更多
文摘为降低智慧教室服务请求响应延迟,提出基于智能桌面虚拟化平台(Operating System Virtualization,OSV)技术的智慧教室管理系统。在系统硬件方面,对触控整合器和QXL设备进行选型与设计;在系统软件方面,应用OSV技术虚拟化设计系统人际交互显示界面,利用模糊逻辑技术设计智慧教室管理程序,实现智慧教室的管理。实验证明,设计的系统对于智慧教室管理服务请求的响应平均延迟时间为0.05 s,短于传统系统,能够对智慧教室管理服务做到实时响应。
文摘In this note we make a test of the open topological string version of the OSV conjecture in the toric Calabi-Yau manifold X = O(-3) → P^2 with background D4-branes wrapped on Lagrangian submanifolds. The Dbrahe partition function reduces to an expectation value of some inserted operators of a q-deformed Yang Mills theory living on a chain of P^1 's in the base p2 of X. At large N this partition function can be written as a sum over squares of chiral blocks, which are related to the open topological string amplitudes in the local p2 geometry with branes at both the outer and inner edges of the toric diagram. This is in agreement with the conjecture.