The most common way of rubbers for obtaining high performance is vulcanization, by which the linear macromolecules are crosslinked into three-dimensional networks. The rubbers vulcanized by covalent bonds are serious ...The most common way of rubbers for obtaining high performance is vulcanization, by which the linear macromolecules are crosslinked into three-dimensional networks. The rubbers vulcanized by covalent bonds are serious pollutants. There has been an increasing interest in the novel rubbers crosslinked by supramolecular interactions such as hydrogen bonds and ionic bonds because of the supramolecular interactions are reversible and the crosslinked materials are likely to be recycled. In this paper, a series of novel NBR/PVC materials crosslinked with CuSO4 by coordinate bonds were prepared for the first time, and the produced materials have excellent mechanical properties. In this system, the coordinate bonds formed in situ during the heat press process. XPS and SEM results prove that there are really crosslinks by coordinated bonds between the polymers and the CuSO4 particles. The characterizations of mechanical properties, crosslink densities and the temperature of glass transition all showed that degree of crosslink and the performance of the coordinated materials could be adjusted controllably.展开更多
文摘The most common way of rubbers for obtaining high performance is vulcanization, by which the linear macromolecules are crosslinked into three-dimensional networks. The rubbers vulcanized by covalent bonds are serious pollutants. There has been an increasing interest in the novel rubbers crosslinked by supramolecular interactions such as hydrogen bonds and ionic bonds because of the supramolecular interactions are reversible and the crosslinked materials are likely to be recycled. In this paper, a series of novel NBR/PVC materials crosslinked with CuSO4 by coordinate bonds were prepared for the first time, and the produced materials have excellent mechanical properties. In this system, the coordinate bonds formed in situ during the heat press process. XPS and SEM results prove that there are really crosslinks by coordinated bonds between the polymers and the CuSO4 particles. The characterizations of mechanical properties, crosslink densities and the temperature of glass transition all showed that degree of crosslink and the performance of the coordinated materials could be adjusted controllably.