Through analysis of the basic transformation of a typical body,the error transformations of the position vector and the displacement vector are employed,a general model for positioning errors of NC machine tools by us...Through analysis of the basic transformation of a typical body,the error transformations of the position vector and the displacement vector are employed,a general model for positioning errors of NC machine tools by using kinematics of the multi body system is discussed.By means of 8031 single chip system,intelligent error compensation controller has been developed.The results of experiments on XH714 machining center show that the positioning accuracy is enhanced effectively by more than 50%.展开更多
Quick and accurate detecting the error of NC machine tool and performing the error compensation are important to improve the machining accuracy of NC machine tool. Currently, there are many methods for detecting the g...Quick and accurate detecting the error of NC machine tool and performing the error compensation are important to improve the machining accuracy of NC machine tool. Currently, there are many methods for detecting the geometric accuracy of NC machine tool. However, these methods have deficiencies in detection efficiency and accuracy as well as in versatility. In the paper, a method with laser tracker based on the multi-station and time-sharing measurement principle is proposed, and this method can rapidly and accurately detect the geometric accuracy of NC machine tool. The machine tool is controlled to move in the preset path in a 3D space or 2D plane, and a laser tracker is used to measure the same motion trajectory of the machine tool successively at different base stations. The original algorithm for multi-station and time-sharing measurement is improved. The space coordinates of the measuring point obtained by the laser tracker are taken as parameter values, and the initial position of each base point can be determined. The redundant equation concerning the base point calibration can be established by the distance information of the laser tracker, and the position of each base point is further determined by solving the equation with least squares method, then the space coordinates of each measuring point can be calibrated. The singular matrix does not occur in calculation with the improved algorithm, which overcomes the limitations of the original algorithm, that the motion trajectory of machine tool is in a 3D space and there exits height difference between the base stations. Adopting the improved algorithm can expand the application of multi-station and time-sharing measurement, and can meet the quick and accurate detecting requirements for different types of NC machine tool.展开更多
Although Markov chain Monte Carlo(MCMC) algorithms are accurate, many factors may cause instability when they are utilized in reliability analysis; such instability makes these algorithms unsuitable for widespread e...Although Markov chain Monte Carlo(MCMC) algorithms are accurate, many factors may cause instability when they are utilized in reliability analysis; such instability makes these algorithms unsuitable for widespread engineering applications. Thus, a reliability modeling and assessment solution aimed at small-sample data of numerical control(NC) machine tools is proposed on the basis of Bayes theories. An expert-judgment process of fusing multi-source prior information is developed to obtain the Weibull parameters' prior distributions and reduce the subjective bias of usual expert-judgment methods. The grid approximation method is applied to two-parameter Weibull distribution to derive the formulas for the parameters' posterior distributions and solve the calculation difficulty of high-dimensional integration. The method is then applied to the real data of a type of NC machine tool to implement a reliability assessment and obtain the mean time between failures(MTBF). The relative error of the proposed method is 5.8020×10-4 compared with the MTBF obtained by the MCMC algorithm. This result indicates that the proposed method is as accurate as MCMC. The newly developed solution for reliability modeling and assessment of NC machine tools under small-sample data is easy, practical, and highly suitable for widespread application in the engineering field; in addition, the solution does not reduce accuracy.展开更多
Volumetric error modeling method is an important te ch nique for enhancement the accuracy of CNC machine tools by error compensation. I n the research field, the main question is how to find an universal kinematics m ...Volumetric error modeling method is an important te ch nique for enhancement the accuracy of CNC machine tools by error compensation. I n the research field, the main question is how to find an universal kinematics m odeling method for different kinds of NC machine tools. Multi-body system theor y is always used to solve the dynamics problem of complex physical system. But t ill now, the error factors that always exist in practice system is still not con sidered. In this paper, the accuracy kinematics of MBS (multi-body system) are developed by adding the movement error items and the positioning error items for every couple of adjacent bodies. After make an analysis for different kinds of NC machine tools we can find that NC machine tools can be looked as a kind of sp ecial MBS. It’s main construction only contains two movement branch. the one is from base part to workpiece and the other is from base part to cutter. So an u niversal volumetric error modeling method and the error analysis method for NC m achine tools can be built in this paper based on MBS theory. The essential condi tion for precision machining is derived through mathematics equations and the co ncept of ICCP (inverse changed cutter path ) and ICNI (inverse changed NC instru ction ) are presented in this paper. The numerical solution methods for ICCP and ICNI are also given in this paper which can be directly used to enhance the mac hining accuracy of NC machine tools. In order to verifying the above works, the double frequency laser interface detecting instrument of RENISHAW is used to mea sure the error parameters of the MAKINO 3-axis NC machine tools and the softwar es are developed using C++ developing language to simulate the cutte r trail under different kind conditions in the computer. Latterly the standard w ork parts are selected to be machined on the MAKINO 3-axis NC machine tools bef ore and after use the above mentioned error compensation method respectively. Th e simulation and experiment results show that the volumetric error modeling meth od is effective and the machining accuracy of CNC machine tools can be improved more than 60% after using the compensation method presented in this paper.展开更多
A new problem that classical statistical methods are incapable of solving is reliability modeling and assessment when multiple numerical control machine tools(NCMTs) reveal zero failures after a reliability test. Thus...A new problem that classical statistical methods are incapable of solving is reliability modeling and assessment when multiple numerical control machine tools(NCMTs) reveal zero failures after a reliability test. Thus, the zero-failure data form and corresponding Bayesian model are developed to solve the zero-failure problem of NCMTs, for which no previous suitable statistical model has been developed. An expert-judgment process that incorporates prior information is presented to solve the difficulty in obtaining reliable prior distributions of Weibull parameters. The equations for the posterior distribution of the parameter vector and the Markov chain Monte Carlo(MCMC) algorithm are derived to solve the difficulty of calculating high-dimensional integration and to obtain parameter estimators. The proposed method is applied to a real case; a corresponding programming code and trick are developed to implement an MCMC simulation in Win BUGS, and a mean time between failures(MTBF) of 1057.9 h is obtained. Given its ability to combine expert judgment, prior information, and data, the proposed reliability modeling and assessment method under the zero failure of NCMTs is validated.展开更多
The methods of identifying geometric error parameters for NC machine tools are introduced. According to analyzing and comparing the different methods, a new method-displacement method with 9 lines is developed based o...The methods of identifying geometric error parameters for NC machine tools are introduced. According to analyzing and comparing the different methods, a new method-displacement method with 9 lines is developed based on the theories of the movement errors of multibody system (MBS). A lot of experiments are also made to obtain 21 terms geometric error parameters by using the error identification software based on the new method.展开更多
It is difficult to collect the prior information for small-sample machinery products when their reliability is assessed by using Bayes method. In this study, an improved Bayes method with gradient reliability(GR) resu...It is difficult to collect the prior information for small-sample machinery products when their reliability is assessed by using Bayes method. In this study, an improved Bayes method with gradient reliability(GR) results as prior information was proposed to solve the problem. A certain type of heavy NC boring and milling machine was considered as the research subject, and its reliability model was established on the basis of its functional and structural characteristics and working principle. According to the stress-intensity interference theory and the reliability model theory, the GR results of the host machine and its key components were obtained. Then the GR results were deemed as prior information to estimate the probabilistic reliability(PR) of the spindle box, the column and the host machine in the present method. The comparative studies demonstrated that the improved Bayes method was applicable in the reliability assessment of heavy NC machine tools.展开更多
The fundamental ideas on building the collaborative design platform of virtual visualization for NC machine tools are introduced. The platform is based on the globally shared product model conforming to the STEP Stand...The fundamental ideas on building the collaborative design platform of virtual visualization for NC machine tools are introduced. The platform is based on the globally shared product model conforming to the STEP Standard,and used PDM system to integrate and encapsulate CAD/CAE and other application software for the product development. The platform also integrated the expert system of NC machine tools design,analysis and estimation. This expert system utilized fuzzy estimation principle to evaluate the design and simulation analysis results and make decisions. The platform provides the collaborative intelligent environment for the design of virtual NC machine tools prototype aiming at integrated product design team. It also supports the customized development of NC machine tools.展开更多
This paper applied the gray system theory to error data processing of NCmachine tools according to the characteristic. It presented the gray metabolism model of error dataprocessing. The test method for the model need...This paper applied the gray system theory to error data processing of NCmachine tools according to the characteristic. It presented the gray metabolism model of error dataprocessing. The test method for the model needs less capacity. Practice proved that the method issimple, calculation is easy, and results are exact.展开更多
Virtual dynamic optimization design can avoid the repeated process from de-sign to trial-manufacture and test.The designer can analyze and optimize the productstructures in virtual visualization environment.The design...Virtual dynamic optimization design can avoid the repeated process from de-sign to trial-manufacture and test.The designer can analyze and optimize the productstructures in virtual visualization environment.The design cycle is shortened and the costis reduced.The paper analyzed the peculiarity of virtual optimization design,and put for-wards the thought and flow to implement virtual optimization design.The example to opti-mize the internal grinder was studied via establishing precise finite element model,modi-fying the layout of Stiffened Plates and designing parameters of the worktable,and usingthe technology of modal frequency revision and the technology of multiple tuned damper.The result of optimization design compared the new grinder with the original grinder showsthat the entire machine's first orders natural frequency is enhanced by 17%,and the re-sponse displacement of the grinding-head has dropped by 28% under the first order natu-ral frequency and by 41% under second order natural frequency.Finally,the dynamic per-formance of the internal grinder was optimized.展开更多
Product system design is a mature concept in western developed countries. It has been applied in war industry during the last century. However,up until now,functional combination is still the main method for product s...Product system design is a mature concept in western developed countries. It has been applied in war industry during the last century. However,up until now,functional combination is still the main method for product system de-sign in China. Therefore,in terms of a concept of product generation and product interaction we are in a weak position compared with the requirements of global markets. Today,the idea of serial product design has attracted much attention in the design field and the definition of product generation as well as its parameters has already become the standard in serial product designs. Although the design of a large-scale NC machine tool is complicated,it can be further optimized by the precise exercise of object design by placing the concept of platform establishment firmly into serial product de-sign. The essence of a serial product design has been demonstrated by the design process of a large-scale NC machine tool.展开更多
The YKJ3180H Economy NC GearHobbing Machine is a new variety,developed recently by the ChongqingMachine Tools Works to meet clients’demands. Its most prominent feature is its highproduction efficiency ( able to compl...The YKJ3180H Economy NC GearHobbing Machine is a new variety,developed recently by the ChongqingMachine Tools Works to meet clients’demands. Its most prominent feature is its highproduction efficiency ( able to complete awork cycle automatically), high processingprecision (Grade 7 or higher according to theGB 10095) and its cost competitiveness. This product is used in the machinetool and machinery industries at automobiles,tractors, gears and gear box factories. It canbe used for processing spur gears and helicalgears, automatic radial feed wormwheels,tapered gears and crowning gears; so it isespecially applicable in factories usingcrowning gear couplings, such as metallurgy,mining, lifting transport and the chemicalmachinery.展开更多
This paper analyzed the errors that occurred by leaving the shape of the cutting edge out of consideration on a NC lathe machine in cutting a semi-sphere surface and brought forward a method to offset these errors and...This paper analyzed the errors that occurred by leaving the shape of the cutting edge out of consideration on a NC lathe machine in cutting a semi-sphere surface and brought forward a method to offset these errors and the correct calculated formula for some parameters on the basis of experiments. It has increased the manufacturing accuracy of the semi-sphere surface on the NC lathe machine.展开更多
Based on the kinematics of the multi-body system , a general model for the positioning errors of NC machine tools by means of the lower numbered body array and the geometric constraint is presented. The parameters ide...Based on the kinematics of the multi-body system , a general model for the positioning errors of NC machine tools by means of the lower numbered body array and the geometric constraint is presented. The parameters identification of geometric errors by an improved 22-line method is discussed. Moreover , an intelligent error compensation controller has been developed. All these are verified by a series of experiments on XH714 machining center. The results show that the prosition- ing errors with compensation have been reduced to ±7 μm from 50 μm.展开更多
介绍了STEP-NC的概念、数据模型及其结构特点,然后通过对比MLP(Machining Line Planner)和STEP-NC数控程序对特征和操作的不同定义方法,分析了在MLP中特征及加工工艺与STEP-NC的对应关系,探讨了在MLP中实现输出STEP-NC格式的零件加工程...介绍了STEP-NC的概念、数据模型及其结构特点,然后通过对比MLP(Machining Line Planner)和STEP-NC数控程序对特征和操作的不同定义方法,分析了在MLP中特征及加工工艺与STEP-NC的对应关系,探讨了在MLP中实现输出STEP-NC格式的零件加工程序的方法。展开更多
The planning method of tool orientation in the five-axis NC machining is studied. The problem of the existing method is analyzed and a new method for generating the global smoothing tool orientation is proposed by int...The planning method of tool orientation in the five-axis NC machining is studied. The problem of the existing method is analyzed and a new method for generating the global smoothing tool orientation is proposed by introducing the key frame idea in the animation-making. According to the feature of the part, several key tool orientations are set without interference between the tool and the part. Then, these key tool orientations are inter- polated by the spline function. By mapping the surface parameter to the spline parameter, the spline function value is obtained and taken as the tool orientation when generating the CL file. The machining result shows that the proposed method realizes the global smoothing of the tool orientation and the continuity of the rotational speed and the rotational acceleration. It also avoids the shake of the machine tool and improves the machining quality.展开更多
文章采用水平分割法确定误差补偿点,对3种运动指令修改算法,实现定位指令、直线插补指令和圆弧插补指令的算法修改。在FANUC Series oi-mate系统VMC-850立式加工中心上运行基于修改NC程序的误差补偿软件,进行对比验证,结果表明补偿后加...文章采用水平分割法确定误差补偿点,对3种运动指令修改算法,实现定位指令、直线插补指令和圆弧插补指令的算法修改。在FANUC Series oi-mate系统VMC-850立式加工中心上运行基于修改NC程序的误差补偿软件,进行对比验证,结果表明补偿后加工精度提高30%左右。展开更多
In order to develop a practical postprocessor for 5-axis machine tool,the general equations of numerically controlled(NC) data for 5-axis configurations with non-orthogonal rotary axes were exactly expressed by the in...In order to develop a practical postprocessor for 5-axis machine tool,the general equations of numerically controlled(NC) data for 5-axis configurations with non-orthogonal rotary axes were exactly expressed by the inverse kinematics,and a windows-based postprocessor written with Visual Basic was developed according to the proposed algorithm.The developed postprocessor is a general system suitable for all kinds of 5-axis machines with orthogonal and non-orthogonal rotary axes.Through implementation of the developed postprocessor and verification by a cutting simulation and machining experiment,the effectiveness of the proposed algorithm is confirmed.Compatibility is improved by allowing exchange of data formats such as rotational total center position(RTCP) controlled NC data,vector post NC data,and program object file(POF) cutter location(CL) data,and convenience is increased by adding the function of work-piece origin offset.Consequently,a practical post-processor for 5-axis machining is developed.展开更多
文摘Through analysis of the basic transformation of a typical body,the error transformations of the position vector and the displacement vector are employed,a general model for positioning errors of NC machine tools by using kinematics of the multi body system is discussed.By means of 8031 single chip system,intelligent error compensation controller has been developed.The results of experiments on XH714 machining center show that the positioning accuracy is enhanced effectively by more than 50%.
基金supported by National Hi-tech Research and Development Program of China (863 Program,Grant No. 2008AA042404)
文摘Quick and accurate detecting the error of NC machine tool and performing the error compensation are important to improve the machining accuracy of NC machine tool. Currently, there are many methods for detecting the geometric accuracy of NC machine tool. However, these methods have deficiencies in detection efficiency and accuracy as well as in versatility. In the paper, a method with laser tracker based on the multi-station and time-sharing measurement principle is proposed, and this method can rapidly and accurately detect the geometric accuracy of NC machine tool. The machine tool is controlled to move in the preset path in a 3D space or 2D plane, and a laser tracker is used to measure the same motion trajectory of the machine tool successively at different base stations. The original algorithm for multi-station and time-sharing measurement is improved. The space coordinates of the measuring point obtained by the laser tracker are taken as parameter values, and the initial position of each base point can be determined. The redundant equation concerning the base point calibration can be established by the distance information of the laser tracker, and the position of each base point is further determined by solving the equation with least squares method, then the space coordinates of each measuring point can be calibrated. The singular matrix does not occur in calculation with the improved algorithm, which overcomes the limitations of the original algorithm, that the motion trajectory of machine tool is in a 3D space and there exits height difference between the base stations. Adopting the improved algorithm can expand the application of multi-station and time-sharing measurement, and can meet the quick and accurate detecting requirements for different types of NC machine tool.
基金Supported by Research on Reliability Assessment and Test Methods of Heavy Machine Tools,China(State Key Science&Technology Project High-grade NC Machine Tools and Basic Manufacturing Equipment,Grant No.2014ZX04014-011)Reliability Modeling of Machining Centers Considering the Cutting Loads,China(Science&Technology Development Plan for Jilin Province,Grant No.3D513S292414)Graduate Innovation Fund of Jilin University,China(Grant No.2014053)
文摘Although Markov chain Monte Carlo(MCMC) algorithms are accurate, many factors may cause instability when they are utilized in reliability analysis; such instability makes these algorithms unsuitable for widespread engineering applications. Thus, a reliability modeling and assessment solution aimed at small-sample data of numerical control(NC) machine tools is proposed on the basis of Bayes theories. An expert-judgment process of fusing multi-source prior information is developed to obtain the Weibull parameters' prior distributions and reduce the subjective bias of usual expert-judgment methods. The grid approximation method is applied to two-parameter Weibull distribution to derive the formulas for the parameters' posterior distributions and solve the calculation difficulty of high-dimensional integration. The method is then applied to the real data of a type of NC machine tool to implement a reliability assessment and obtain the mean time between failures(MTBF). The relative error of the proposed method is 5.8020×10-4 compared with the MTBF obtained by the MCMC algorithm. This result indicates that the proposed method is as accurate as MCMC. The newly developed solution for reliability modeling and assessment of NC machine tools under small-sample data is easy, practical, and highly suitable for widespread application in the engineering field; in addition, the solution does not reduce accuracy.
文摘Volumetric error modeling method is an important te ch nique for enhancement the accuracy of CNC machine tools by error compensation. I n the research field, the main question is how to find an universal kinematics m odeling method for different kinds of NC machine tools. Multi-body system theor y is always used to solve the dynamics problem of complex physical system. But t ill now, the error factors that always exist in practice system is still not con sidered. In this paper, the accuracy kinematics of MBS (multi-body system) are developed by adding the movement error items and the positioning error items for every couple of adjacent bodies. After make an analysis for different kinds of NC machine tools we can find that NC machine tools can be looked as a kind of sp ecial MBS. It’s main construction only contains two movement branch. the one is from base part to workpiece and the other is from base part to cutter. So an u niversal volumetric error modeling method and the error analysis method for NC m achine tools can be built in this paper based on MBS theory. The essential condi tion for precision machining is derived through mathematics equations and the co ncept of ICCP (inverse changed cutter path ) and ICNI (inverse changed NC instru ction ) are presented in this paper. The numerical solution methods for ICCP and ICNI are also given in this paper which can be directly used to enhance the mac hining accuracy of NC machine tools. In order to verifying the above works, the double frequency laser interface detecting instrument of RENISHAW is used to mea sure the error parameters of the MAKINO 3-axis NC machine tools and the softwar es are developed using C++ developing language to simulate the cutte r trail under different kind conditions in the computer. Latterly the standard w ork parts are selected to be machined on the MAKINO 3-axis NC machine tools bef ore and after use the above mentioned error compensation method respectively. Th e simulation and experiment results show that the volumetric error modeling meth od is effective and the machining accuracy of CNC machine tools can be improved more than 60% after using the compensation method presented in this paper.
基金Project(2014ZX04014-011)supported by State Key Science&Technology Program of ChinaProject([2016]414)supported by the 13th Five-year Program of Education Department of Jilin Province,China
文摘A new problem that classical statistical methods are incapable of solving is reliability modeling and assessment when multiple numerical control machine tools(NCMTs) reveal zero failures after a reliability test. Thus, the zero-failure data form and corresponding Bayesian model are developed to solve the zero-failure problem of NCMTs, for which no previous suitable statistical model has been developed. An expert-judgment process that incorporates prior information is presented to solve the difficulty in obtaining reliable prior distributions of Weibull parameters. The equations for the posterior distribution of the parameter vector and the Markov chain Monte Carlo(MCMC) algorithm are derived to solve the difficulty of calculating high-dimensional integration and to obtain parameter estimators. The proposed method is applied to a real case; a corresponding programming code and trick are developed to implement an MCMC simulation in Win BUGS, and a mean time between failures(MTBF) of 1057.9 h is obtained. Given its ability to combine expert judgment, prior information, and data, the proposed reliability modeling and assessment method under the zero failure of NCMTs is validated.
基金This project is supported by National Advanced ResearchFoundation (No.PD521910) and National Natural ScienceFoundation of Ch
文摘The methods of identifying geometric error parameters for NC machine tools are introduced. According to analyzing and comparing the different methods, a new method-displacement method with 9 lines is developed based on the theories of the movement errors of multibody system (MBS). A lot of experiments are also made to obtain 21 terms geometric error parameters by using the error identification software based on the new method.
基金Supported by the National Science and Technology Major Project of China(No.2009ZX04002-061)the National Science and Technology Support Program(No.2013BAF06B00)the Natural Science Foundation of Tianjin(No.13JCZDJC34000)
文摘It is difficult to collect the prior information for small-sample machinery products when their reliability is assessed by using Bayes method. In this study, an improved Bayes method with gradient reliability(GR) results as prior information was proposed to solve the problem. A certain type of heavy NC boring and milling machine was considered as the research subject, and its reliability model was established on the basis of its functional and structural characteristics and working principle. According to the stress-intensity interference theory and the reliability model theory, the GR results of the host machine and its key components were obtained. Then the GR results were deemed as prior information to estimate the probabilistic reliability(PR) of the spindle box, the column and the host machine in the present method. The comparative studies demonstrated that the improved Bayes method was applicable in the reliability assessment of heavy NC machine tools.
基金Funded by National Natural Science foundation of China(50375026)
文摘The fundamental ideas on building the collaborative design platform of virtual visualization for NC machine tools are introduced. The platform is based on the globally shared product model conforming to the STEP Standard,and used PDM system to integrate and encapsulate CAD/CAE and other application software for the product development. The platform also integrated the expert system of NC machine tools design,analysis and estimation. This expert system utilized fuzzy estimation principle to evaluate the design and simulation analysis results and make decisions. The platform provides the collaborative intelligent environment for the design of virtual NC machine tools prototype aiming at integrated product design team. It also supports the customized development of NC machine tools.
文摘This paper applied the gray system theory to error data processing of NCmachine tools according to the characteristic. It presented the gray metabolism model of error dataprocessing. The test method for the model needs less capacity. Practice proved that the method issimple, calculation is easy, and results are exact.
基金Supported by the National Natural Science Foundation of China(50375026)
文摘Virtual dynamic optimization design can avoid the repeated process from de-sign to trial-manufacture and test.The designer can analyze and optimize the productstructures in virtual visualization environment.The design cycle is shortened and the costis reduced.The paper analyzed the peculiarity of virtual optimization design,and put for-wards the thought and flow to implement virtual optimization design.The example to opti-mize the internal grinder was studied via establishing precise finite element model,modi-fying the layout of Stiffened Plates and designing parameters of the worktable,and usingthe technology of modal frequency revision and the technology of multiple tuned damper.The result of optimization design compared the new grinder with the original grinder showsthat the entire machine's first orders natural frequency is enhanced by 17%,and the re-sponse displacement of the grinding-head has dropped by 28% under the first order natu-ral frequency and by 41% under second order natural frequency.Finally,the dynamic per-formance of the internal grinder was optimized.
文摘Product system design is a mature concept in western developed countries. It has been applied in war industry during the last century. However,up until now,functional combination is still the main method for product system de-sign in China. Therefore,in terms of a concept of product generation and product interaction we are in a weak position compared with the requirements of global markets. Today,the idea of serial product design has attracted much attention in the design field and the definition of product generation as well as its parameters has already become the standard in serial product designs. Although the design of a large-scale NC machine tool is complicated,it can be further optimized by the precise exercise of object design by placing the concept of platform establishment firmly into serial product de-sign. The essence of a serial product design has been demonstrated by the design process of a large-scale NC machine tool.
文摘The YKJ3180H Economy NC GearHobbing Machine is a new variety,developed recently by the ChongqingMachine Tools Works to meet clients’demands. Its most prominent feature is its highproduction efficiency ( able to complete awork cycle automatically), high processingprecision (Grade 7 or higher according to theGB 10095) and its cost competitiveness. This product is used in the machinetool and machinery industries at automobiles,tractors, gears and gear box factories. It canbe used for processing spur gears and helicalgears, automatic radial feed wormwheels,tapered gears and crowning gears; so it isespecially applicable in factories usingcrowning gear couplings, such as metallurgy,mining, lifting transport and the chemicalmachinery.
文摘This paper analyzed the errors that occurred by leaving the shape of the cutting edge out of consideration on a NC lathe machine in cutting a semi-sphere surface and brought forward a method to offset these errors and the correct calculated formula for some parameters on the basis of experiments. It has increased the manufacturing accuracy of the semi-sphere surface on the NC lathe machine.
文摘Based on the kinematics of the multi-body system , a general model for the positioning errors of NC machine tools by means of the lower numbered body array and the geometric constraint is presented. The parameters identification of geometric errors by an improved 22-line method is discussed. Moreover , an intelligent error compensation controller has been developed. All these are verified by a series of experiments on XH714 machining center. The results show that the prosition- ing errors with compensation have been reduced to ±7 μm from 50 μm.
文摘The planning method of tool orientation in the five-axis NC machining is studied. The problem of the existing method is analyzed and a new method for generating the global smoothing tool orientation is proposed by introducing the key frame idea in the animation-making. According to the feature of the part, several key tool orientations are set without interference between the tool and the part. Then, these key tool orientations are inter- polated by the spline function. By mapping the surface parameter to the spline parameter, the spline function value is obtained and taken as the tool orientation when generating the CL file. The machining result shows that the proposed method realizes the global smoothing of the tool orientation and the continuity of the rotational speed and the rotational acceleration. It also avoids the shake of the machine tool and improves the machining quality.
基金Work supported by the Second Stage of Brain Korea 21 Projects
文摘In order to develop a practical postprocessor for 5-axis machine tool,the general equations of numerically controlled(NC) data for 5-axis configurations with non-orthogonal rotary axes were exactly expressed by the inverse kinematics,and a windows-based postprocessor written with Visual Basic was developed according to the proposed algorithm.The developed postprocessor is a general system suitable for all kinds of 5-axis machines with orthogonal and non-orthogonal rotary axes.Through implementation of the developed postprocessor and verification by a cutting simulation and machining experiment,the effectiveness of the proposed algorithm is confirmed.Compatibility is improved by allowing exchange of data formats such as rotational total center position(RTCP) controlled NC data,vector post NC data,and program object file(POF) cutter location(CL) data,and convenience is increased by adding the function of work-piece origin offset.Consequently,a practical post-processor for 5-axis machining is developed.