该文采用M OD IS N DV I时序数据对东北区土地覆盖分类进行研究,以验证M OD IS区域土地覆盖制图的可靠性。通过试验发现经过Sav izky-G o lay滤波处理能有效去除云、缺失数据及异常值的影响,使得N DV I时序曲线能更好的反映植被季相变...该文采用M OD IS N DV I时序数据对东北区土地覆盖分类进行研究,以验证M OD IS区域土地覆盖制图的可靠性。通过试验发现经过Sav izky-G o lay滤波处理能有效去除云、缺失数据及异常值的影响,使得N DV I时序曲线能更好的反映植被季相变化特征,分类结果表明N DV I时序数列能较好的区分植被与非植被、草本(一年生)与木本(多年生)覆盖类型。但研究区内一年一熟的农作物与高盖度草地、落叶针叶林与落叶阔叶林具有相似的物候特征,混分现象比较严重。该研究通过添加地表温度(land surface tem perature,LST)数据解决这一问题,利用所得温度/植被指数TV I对研究区进行土地覆盖分类。所得结果用363个野外调查样区进行验证,N DV I及TV I时序数据的分类精度分别为62.26%与71.63%。结果表明TV I比N DV I对土地覆盖类型中的植被类型识别更有效。展开更多
文摘该文采用M OD IS N DV I时序数据对东北区土地覆盖分类进行研究,以验证M OD IS区域土地覆盖制图的可靠性。通过试验发现经过Sav izky-G o lay滤波处理能有效去除云、缺失数据及异常值的影响,使得N DV I时序曲线能更好的反映植被季相变化特征,分类结果表明N DV I时序数列能较好的区分植被与非植被、草本(一年生)与木本(多年生)覆盖类型。但研究区内一年一熟的农作物与高盖度草地、落叶针叶林与落叶阔叶林具有相似的物候特征,混分现象比较严重。该研究通过添加地表温度(land surface tem perature,LST)数据解决这一问题,利用所得温度/植被指数TV I对研究区进行土地覆盖分类。所得结果用363个野外调查样区进行验证,N DV I及TV I时序数据的分类精度分别为62.26%与71.63%。结果表明TV I比N DV I对土地覆盖类型中的植被类型识别更有效。