期刊文献+
共找到4,221篇文章
< 1 2 212 >
每页显示 20 50 100
Basic Tenets of Classification Algorithms K-Nearest-Neighbor, Support Vector Machine, Random Forest and Neural Network: A Review 被引量:1
1
作者 Ernest Yeboah Boateng Joseph Otoo Daniel A. Abaye 《Journal of Data Analysis and Information Processing》 2020年第4期341-357,共17页
In this paper, sixty-eight research articles published between 2000 and 2017 as well as textbooks which employed four classification algorithms: K-Nearest-Neighbor (KNN), Support Vector Machines (SVM), Random Forest (... In this paper, sixty-eight research articles published between 2000 and 2017 as well as textbooks which employed four classification algorithms: K-Nearest-Neighbor (KNN), Support Vector Machines (SVM), Random Forest (RF) and Neural Network (NN) as the main statistical tools were reviewed. The aim was to examine and compare these nonparametric classification methods on the following attributes: robustness to training data, sensitivity to changes, data fitting, stability, ability to handle large data sizes, sensitivity to noise, time invested in parameter tuning, and accuracy. The performances, strengths and shortcomings of each of the algorithms were examined, and finally, a conclusion was arrived at on which one has higher performance. It was evident from the literature reviewed that RF is too sensitive to small changes in the training dataset and is occasionally unstable and tends to overfit in the model. KNN is easy to implement and understand but has a major drawback of becoming significantly slow as the size of the data in use grows, while the ideal value of K for the KNN classifier is difficult to set. SVM and RF are insensitive to noise or overtraining, which shows their ability in dealing with unbalanced data. Larger input datasets will lengthen classification times for NN and KNN more than for SVM and RF. Among these nonparametric classification methods, NN has the potential to become a more widely used classification algorithm, but because of their time-consuming parameter tuning procedure, high level of complexity in computational processing, the numerous types of NN architectures to choose from and the high number of algorithms used for training, most researchers recommend SVM and RF as easier and wieldy used methods which repeatedly achieve results with high accuracies and are often faster to implement. 展开更多
关键词 Classification Algorithms NON-PARAMETRIC K-nearest-neighbor Neural Networks Random Forest Support Vector Machines
下载PDF
Discrete modulational instability and bright localized spin wave modes in easy-axis weak ferromagnetic spin chains involving the next-nearest-neighbor coupling
2
作者 Jiayu Xie Zhihao Deng +1 位作者 Xia Chang Bing Tang 《Chinese Physics B》 SCIE EI CAS CSCD 2019年第7期449-458,共10页
We report a theoretical work on the properties of modulational instability and bright type nonlinear localized modes in one-dimensional easy-axis weak ferromagnetic spin lattices involving next-nearest-neighbor coupli... We report a theoretical work on the properties of modulational instability and bright type nonlinear localized modes in one-dimensional easy-axis weak ferromagnetic spin lattices involving next-nearest-neighbor couplings.With a linear stability analysis, we calculate the growth rates of the modulational instability, and plot the instability regions.When the strength of the next-nearest-neighbor coupling is large enough, two new asymmetric modulational instability regions appear near the boundary of the first Brillouin zone.Furthermore, analytical forms of the bright nonlinear localized modes are constructed by means of a quasi-discreteness approach.The influence of the next-nearest-neighbor coupling on the Brillouin zone center mode and boundary mode are discussed.In particular, we discover a reversal phenomenon of the propagation direction of the Brillouin zone boundary mode. 展开更多
关键词 modulational instability analysis intrinsic LOCALIZED SPIN-WAVE MODES weak FERROMAGNETS NEXT-nearest-neighbor couplings
下载PDF
Support Vector Machine-Based Fault Diagnosis of Power Transformer Using k Nearest-Neighbor Imputed DGA Dataset 被引量:3
3
作者 Zahriah Binti Sahri Rubiyah Binti Yusof 《Journal of Computer and Communications》 2014年第9期22-31,共10页
Missing values are prevalent in real-world datasets and they may reduce predictive performance of a learning algorithm. Dissolved Gas Analysis (DGA), one of the most deployable methods for detecting and predicting inc... Missing values are prevalent in real-world datasets and they may reduce predictive performance of a learning algorithm. Dissolved Gas Analysis (DGA), one of the most deployable methods for detecting and predicting incipient faults in power transformers is one of the casualties. Thus, this paper proposes filling-in the missing values found in a DGA dataset using the k-nearest neighbor imputation method with two different distance metrics: Euclidean and Cityblock. Thereafter, using these imputed datasets as inputs, this study applies Support Vector Machine (SVM) to built models which are used to classify transformer faults. Experimental results are provided to show the effectiveness of the proposed approach. 展开更多
关键词 MISSING VALUES Dissolved Gas Analysis Support Vector Machine k-Nearest NEIGHBORS
下载PDF
基于时域波形特征认知的输电线路近端故障辨识与定位 被引量:2
4
作者 张广斌 陈柏宇 +1 位作者 束洪春 司大军 《电力系统自动化》 EI CSCD 北大核心 2024年第5期146-156,共11页
针对现有单端行波故障测距对近端故障存在测距盲区、双端行波故障测距对近端故障测距误差较大,无法满足工程需要的不足,提出基于波形特征认知的近端故障辨识与定位方法。首先,分析了线路故障行波传播规律,以固定分辨率显示波形。发现线... 针对现有单端行波故障测距对近端故障存在测距盲区、双端行波故障测距对近端故障测距误差较大,无法满足工程需要的不足,提出基于波形特征认知的近端故障辨识与定位方法。首先,分析了线路故障行波传播规律,以固定分辨率显示波形。发现线路近端故障时,初始行波及其后续波形在长时窗整体宏观观测下呈堆叠缓变特征,而在短时窗局部放大观测下呈周期性变化特征,且周期与故障距离相关。不同线路的近端故障历史样本能统一作为参照基准为测距提供提示。进而提出基于波形密度和突变分布的近端故障辨识方法。最后,对辨识出的近端故障进行周期估计,利用近端故障与线长的无关性以及历史样本突变周期和故障位置已知性,搜索周期最近邻历史样本,并由已知故障距离插值实现故障位置确定。基于大量实测数据进行仿真测试,结果表明所提方法能够显著提升单端行波测距可靠性和成功率。 展开更多
关键词 故障测距 近端故障 行波 突变周期 近邻搜索 像素密度分布
下载PDF
基于沙地猫群优化–最小二乘支持向量机的动态NOx排放预测 被引量:4
5
作者 金秀章 史德金 乔鹏 《中国电机工程学报》 EI CSCD 北大核心 2024年第1期182-190,I0015,共10页
针对火电机组频繁调峰导致机组燃烧状态不稳,进而导致锅炉出口NOx浓度波动范围大的问题,提出一种基于沙地猫群优化(sand cat sarm optimization,SCSO)的最小二乘支持向量机(leastsquaressupportvectormachine,LSSVM) NOx动态预测模型。... 针对火电机组频繁调峰导致机组燃烧状态不稳,进而导致锅炉出口NOx浓度波动范围大的问题,提出一种基于沙地猫群优化(sand cat sarm optimization,SCSO)的最小二乘支持向量机(leastsquaressupportvectormachine,LSSVM) NOx动态预测模型。首先利用k近邻互信息计算时间延迟的同时筛选辅助变量。然后,基于SCSO算法进行输入变量阶次的选择。使用包含辅助变量时间延迟和阶次的信息作为模型的输入,SCSO算法优化最小二乘支持向量机参数,建立动态NOx排放最小二乘支持向量机预测模型(SCSO-LSSVM动态软测量模型)。最后将模型与未加入迟延的LSSVM模型,加入迟延的LSSVM模型和粒子群优化算法(particle swarm optimization,PSO)优化最小二乘支持向量机参数的动态软测量模型进行对比验证。结果表明,相较于其他模型,该文建立SCSO-LSSVM动态软测量模型均方根误差、平均绝对误差、平均绝对误差最小,预测精度最高,而且在NOx浓度剧烈波动时也能够较好地预测NOx浓度,具有很好的动态特性。 展开更多
关键词 NOx浓度 k近邻互信息 沙地猫群优化算法 最小二乘支持向量机 软测量模型
下载PDF
基于网格近邻优化的密度峰值聚类算法 被引量:1
6
作者 刘继 杨金瑞 《计算机应用研究》 CSCD 北大核心 2024年第4期1058-1063,共6页
密度峰值聚类(DPC)将数据样本点的局部密度和相对距离进行结合,能对任意形状数据集进行聚类处理,但密度峰值聚类算法存在主观选择截断距离、简单分配策略和较高时间复杂度等问题。为此,提出了一种基于网格近邻优化的密度峰值聚类算法(KG... 密度峰值聚类(DPC)将数据样本点的局部密度和相对距离进行结合,能对任意形状数据集进行聚类处理,但密度峰值聚类算法存在主观选择截断距离、简单分配策略和较高时间复杂度等问题。为此,提出了一种基于网格近邻优化的密度峰值聚类算法(KG-DPC算法)。首先对数据空间进行网格化,减少了样本数据点之间距离的计算量;在计算局部密度时不仅考虑了网格自身的密度值,而且考虑了周围k个近邻的网格密度值,降低了主观选择截断距离对聚类结果的影响,提高了聚类准确率,设定网格密度阈值,保证了聚类结果的稳定性。通过实验结果表明,KG-DPC算法比DBSCAN、DPC和SDPC算法在聚类准确率上有很大提升,在聚类平均消耗时间上DPC、SNN-DPC和DPC-NN算法分别降低38%、44%和44%。在保证基本聚类准确率的基础上,KG-DPC算法在聚类效率上有特定优势。 展开更多
关键词 密度峰值聚类 密度阈值 网格 近邻优化
下载PDF
求解带容量约束车辆路径问题的改进遗传算法 被引量:1
7
作者 徐伟华 邱龙龙 +1 位作者 张根瑞 魏传祥 《计算机工程与设计》 北大核心 2024年第3期785-792,共8页
为解决传统遗传算法求解带容量约束的车辆路径问题时收敛速度慢和局部搜索能力差的问题,对传统遗传算法提出一种改进策略。使用基于贪婪策略的启发式交叉算子加强算法接近最优解的能力,加快算法收敛速度,在变异操作中,引入最近邻搜索算... 为解决传统遗传算法求解带容量约束的车辆路径问题时收敛速度慢和局部搜索能力差的问题,对传统遗传算法提出一种改进策略。使用基于贪婪策略的启发式交叉算子加强算法接近最优解的能力,加快算法收敛速度,在变异操作中,引入最近邻搜索算子,缩小基因变异范围,使用单点局部插入算子提高算法的局部优化能力。采用精英选择和轮盘赌法结合的选择策略,保持种群多样性以加强算法的全局搜索能力。实例计算测试表明,与传统遗传算法相比,所提算法求解平均偏差降低了70.25%,求解时间减少了87.41%;与ALNS和AGGWOA算法相比,有更高的求解质量和更好的稳定性。 展开更多
关键词 遗传算法 车辆路径问题 贪婪策略 交叉算子 最近邻搜索 局部优化 精英选择
下载PDF
基于加权实例推理的缓倾斜综采工作面液压支架选型研究 被引量:2
8
作者 吴悦 张志伟 +2 位作者 桑文龙 刘佳音 何龙龙 《煤炭技术》 CAS 2024年第1期207-210,共4页
为实现地质构造简单的缓倾斜综采工作面液压支架智能化选型,提出了一种基于加权实例推理的液压支架选型方法。首先,建立了液压支架选型实例库;其次,采用粗糙集理论和序关系分析法进行权重构造;另外,将液压支架的条件属性分为3种类型计... 为实现地质构造简单的缓倾斜综采工作面液压支架智能化选型,提出了一种基于加权实例推理的液压支架选型方法。首先,建立了液压支架选型实例库;其次,采用粗糙集理论和序关系分析法进行权重构造;另外,将液压支架的条件属性分为3种类型计算相似度;最后通过匹配实例选型。以某煤矿选型方案为例,并以50组液压支架的属性数据进行验证。结果表明,该方法的准确率为88%,能够为液压支架的智能化选型提供较好的参考依据。 展开更多
关键词 液压支架 实例推理 粗糙集 序关系分析法 最邻近算法
下载PDF
面向密度分布不均数据的加权逆近邻密度峰值聚类算法
9
作者 吕莉 陈威 +2 位作者 肖人彬 韩龙哲 谭德坤 《智能系统学报》 CSCD 北大核心 2024年第1期165-175,共11页
针对密度分布不均数据,密度峰值聚类算法易忽略类簇间样本的疏密差异,导致误选类簇中心;分配策略易将稀疏区域的样本误分到密集区域,导致聚类效果不佳的问题,本文提出一种面向密度分布不均数据的加权逆近邻密度峰值聚类算法。该算法首... 针对密度分布不均数据,密度峰值聚类算法易忽略类簇间样本的疏密差异,导致误选类簇中心;分配策略易将稀疏区域的样本误分到密集区域,导致聚类效果不佳的问题,本文提出一种面向密度分布不均数据的加权逆近邻密度峰值聚类算法。该算法首先在局部密度公式中引入基于sigmoid函数的权重系数,增加稀疏区域样本的权重,结合逆近邻思想,重新定义了样本的局部密度,有效提升类簇中心的识别率;其次,引入改进的样本相似度策略,利用样本间的逆近邻及共享逆近邻信息,使得同一类簇样本间具有较高的相似度,可有效改善稀疏区域样本分配错误的问题。在密度分布不均、复杂形态和UCI数据集上的对比实验表明,本文算法的聚类效果优于IDPC-FA、FNDPC、FKNN-DPC、DPC和DPCSA算法。 展开更多
关键词 密度峰值聚类 密度分布不均 逆近邻 共享逆近邻 样本相似度 局部密度 分配策略 数据挖掘
下载PDF
基于不一致近邻的模糊粗糙集特征选择
10
作者 赵洁 叶文浩 +2 位作者 梁周扬 陈建新 董振宁 《计算机工程》 CSCD 北大核心 2024年第1期110-119,共10页
模糊粗糙集可突破经典粗糙集仅能处理离散数据的局限,有效对连续型数值进行特征选择。然而,模糊粗糙集以对象为中心计算,时间复杂度高,难以处理高维和大规模数据。为此,基于水平截集提出一种不一致近邻加速策略。该策略跟踪论域中每个... 模糊粗糙集可突破经典粗糙集仅能处理离散数据的局限,有效对连续型数值进行特征选择。然而,模糊粗糙集以对象为中心计算,时间复杂度高,难以处理高维和大规模数据。为此,基于水平截集提出一种不一致近邻加速策略。该策略跟踪论域中每个对象的模糊近邻集,持续删减其中不影响计算的近邻,若对象的不一致近邻删减至空,则删减该对象,从而提高算法效率。同时,设计一种基于不一致近邻递减的属性重要度,可有效抑制冗余特征入选,提升效率及分类精度。通过理论证明,所提的加速策略及属性重要度不影响属性入选的次序。在此基础上,提出新的模糊粗糙集特征选择算法。在9个UCI和scikit数据集上进行验证,实验结果表明,该算法不仅有效缩短运行时间,并可取得较高的分类精度,相比FA-FSCE、AVDP和IV-FS-FRS-2算法,运行时间至少可缩短9.44%,尤其在高维和大规模数据上可缩短61.01%~99.54%,在支持向量机和K-近邻算法的分类精度上最高可分别提高11.20%和19.95%。 展开更多
关键词 模糊粗糙集 特征选择 水平截集 不一致近邻 属性重要度
下载PDF
ML组合的CYGNSS海面风速反演质量控制模型
11
作者 张云 赵星宇 +3 位作者 杨树瑚 孙聪 韩彦岭 尹继伟 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2024年第1期20-29,共10页
卷积神经网络(CNN)可用于气旋全球导航卫星系统(CYGNSS)的海面风速反演。虽然在模型训练前设置了质量控制指标来检测和削弱CYGNSS的异常观测数据,但CYGNSS观测数据中仍存在异常值导致模型反演精度降低,甚至出现错误反演结果。因此,提出... 卷积神经网络(CNN)可用于气旋全球导航卫星系统(CYGNSS)的海面风速反演。虽然在模型训练前设置了质量控制指标来检测和削弱CYGNSS的异常观测数据,但CYGNSS观测数据中仍存在异常值导致模型反演精度降低,甚至出现错误反演结果。因此,提出一种基于机器学习(ML)组合的海面风速反演模型。在基于CNN回归模型的CYGNSS反演海面风速基础上,ML分类模型生成CNN回归结果的质量标志位,该标志位可以检测并删除CNN回归结果的异常值,进一步提高风速反演结果的数据质量,ML分类模型能够更好地考虑各种数据误差之间的相互作用,而不是单独使用每个条件的阈值,以达到更优的海面风速反演精度的效果。实验对比了Logistic回归(LR)、决策树(DT)、朴素贝叶斯模型、K最邻近(KNN)算法、神经网络(NN)模型、支持向量机(SVM)算法等6个分类模型,其中,基于KNN算法的分类模型对风速反演质量控制的效果最优。所提风速反演组合模型显著提高了反演结果的精度,在0~20 m/s区间内,异常样本过滤率为81.27%,在所有被过滤的数据中,过滤正确率为86.03%;风速反演误差的均方根误差从无ML分类模型的1.7 m/s降低到有ML分类模型的1.44 m/s,其中,训练样本为0~10 m/s的反演结果精度提升效果较为明显,证明了所提风速反演组合模型对风速质量控制的有效性。 展开更多
关键词 气旋全球导航卫星系统 风速反演 质量控制 机器学习组合模型 卷积神经网络 K最邻近算法
下载PDF
自适应初始光子收集半径的卡方渐进光子映射
12
作者 贺怀清 元林 +1 位作者 刘浩翰 惠康华 《计算机工程与设计》 北大核心 2024年第8期2433-2441,共9页
卡方渐进光子映射(chi-squared progressive photon mapping, CPPM)使用K近邻法(K nearest neighbor, KNN)为命中点确定初始半径,导致图像中光照均匀区域的噪点及明暗交界区域和焦散区域的模糊。针对此问题,提出一种计算光子映射初始半... 卡方渐进光子映射(chi-squared progressive photon mapping, CPPM)使用K近邻法(K nearest neighbor, KNN)为命中点确定初始半径,导致图像中光照均匀区域的噪点及明暗交界区域和焦散区域的模糊。针对此问题,提出一种计算光子映射初始半径的算法,自适应地为各命中点确定初始半径:为CPPM算法增加预处理环节,根据对光子分布的均匀程度的检验及对高频区域的筛选为命中点设置初始半径,以保证光照均匀区域的命中点保持在大半径上,光照变化区域的命中点半径快速下降。实验结果表明,改进算法减少了光子映射算法的方差和偏差,提高了渲染效果。 展开更多
关键词 渐进光子映射 K近邻法 卡方检验 自适应 初始半径 焦散 光子分布
下载PDF
高光谱影像逆近邻密度峰值聚类的波段选择算法
13
作者 孙根云 李忍忍 +3 位作者 张爱竹 安娜 付航 潘兆杰 《测绘学报》 EI CSCD 北大核心 2024年第1期8-19,共12页
密度峰值聚类波段选择算法利用局部密度描述波段的密度信息,然而现有的局部密度容易忽略波段分布的全局信息,不能有效描述波段的分布特征,导致波段子集分类精度有限。为解决上述问题,本文提出一种基于逆近邻的密度峰值聚类波段选择算法... 密度峰值聚类波段选择算法利用局部密度描述波段的密度信息,然而现有的局部密度容易忽略波段分布的全局信息,不能有效描述波段的分布特征,导致波段子集分类精度有限。为解决上述问题,本文提出一种基于逆近邻的密度峰值聚类波段选择算法。首先,利用波段与其K近邻构建K近邻有向图,获取波段的逆近邻,以及波段之间的共享近邻和共享逆近邻;然后,利用共享近邻和共享逆近邻并集的个数作为波段之间的相似度,利用波段与其逆近邻的平均欧氏距离和相似度构造增强型局部密度;最后,将增强型局部密度、距离因子、信息熵三者的乘积作为权重值,根据权重值挑选波段子集。为提高试验效率和实用性,本文算法还提出一种自动获得K值的自适应K值方法。在3个高光谱标准数据集上的试验结果表明,本文算法得到的波段子集比其他先进算法挑选的波段有更好的分类性能,尤其是在波段数较少的情况下,而且计算效率较高。 展开更多
关键词 高光谱影像 波段选择 密度峰值聚类 逆近邻 局部密度 自适应K值
下载PDF
基于融合K-近邻算法的电压互感器在线监测方法
14
作者 李振华 崔九喜 +3 位作者 杨信强 吴海荣 杨诗豪 薛田良 《电网技术》 EI CSCD 北大核心 2024年第9期3938-3947,I0100,共11页
由于受工作时长和环境因素的影响,电容式电压互感器(capacitor voltage transformer,CVT)在运行过程中误差稳定性不高,易出现电能计量失准现象。为此,该文提出了一种基于融合K-近邻算法(fusion K-nearest neighbor algorithm,FKNN)的电... 由于受工作时长和环境因素的影响,电容式电压互感器(capacitor voltage transformer,CVT)在运行过程中误差稳定性不高,易出现电能计量失准现象。为此,该文提出了一种基于融合K-近邻算法(fusion K-nearest neighbor algorithm,FKNN)的电压互感器在线评估方法。该方法利用互感器的历史运行数据构建虚拟标准器,通过改进K-近邻算法对互感器实时状态进行监测,实现对异常情况的报警。同时,提出了一种加权移动时间窗的方法,自适应更新异常阈值,有效削弱电网不平衡波动的影响。实验结果表明,该文方法能够准确监测互感器的0.2级误差漂移。 展开更多
关键词 电压互感器 虚拟标准器 K-近邻算法 自适应更新
下载PDF
结合精英初始化和K近邻的蛇优化算法
15
作者 王丽娟 刘姝含 +1 位作者 王剑 田亚旗 《计算机应用研究》 CSCD 北大核心 2024年第9期2712-2721,共10页
蛇优化算法(SO)是一种受自然界中蛇生存行为启发产生的元启发式优化算法。原始蛇优化算法存在收敛速度慢、易陷入局部最优的问题,因此提出了一种结合精英初始化和K近邻的改进蛇优化算法(elite initia-lization and K-nearest neighbors ... 蛇优化算法(SO)是一种受自然界中蛇生存行为启发产生的元启发式优化算法。原始蛇优化算法存在收敛速度慢、易陷入局部最优的问题,因此提出了一种结合精英初始化和K近邻的改进蛇优化算法(elite initia-lization and K-nearest neighbors improved snake optimizer,EKISO)。首先,为了提高初始种群质量,在种群初始化阶段提出精英初始化的方法,根据种群精英个体产生优质初始种群个体;其次,通过振荡因子优化螺旋觅食策略扩大全局勘探阶段的搜索范围、提高算法的局部逃逸能力;最后,在局部开发阶段提出K近邻思想的位置更新方法,增强种群个体之间的信息交互能力,从而加快收敛速度、提高收敛精度。利用14个经典测试函数和4个CEC2017测试函数将该方法与其他7种优化算法进行对比,证明EKISO收敛速度更快、精度更高且不易陷入局部最优。为了进一步验证EKISO的实用性与可行性,将EKISO应用于压力容器设计问题中,通过实验对比分析可知,EKISO在处理实际优化问题上具有一定的优越性。 展开更多
关键词 蛇优化算法 精英初始化 K近邻 振荡因子 工程优化
下载PDF
缺失数据过程的自适应多元EWMA控制图
16
作者 濮晓龙 项冬冬 陈昕妍 《应用概率统计》 CSCD 北大核心 2024年第2期343-363,共21页
随着生产过程的日益复杂,多元统计过程控制(SPC)领域对在线算法的关注与日俱增.然而,基于完整数据和均匀时间间隔假设的传统方法在存在缺失数据时表现并不理想.为了最大化利用可用信息,我们提出了一种自适应指数加权移动平均(EWMA)控制... 随着生产过程的日益复杂,多元统计过程控制(SPC)领域对在线算法的关注与日俱增.然而,基于完整数据和均匀时间间隔假设的传统方法在存在缺失数据时表现并不理想.为了最大化利用可用信息,我们提出了一种自适应指数加权移动平均(EWMA)控制图,它采用了加权插补方法,能够充分利用完整数据和不完整数据之间的关系.具体而言,我们首先引入了两种恢复方法:改进的K近邻方法和传统的单变量EWMA方法.然后,我们构造了一个自适应加权函数来结合这两种方法,即当样本信息表明过程超出控制的可能性增加时,会降低EWMA统计量的权重,反之亦然.通过模拟结果和一个实际案例,我们证明了所提出方案的稳健性和敏感性. 展开更多
关键词 在线监控 完全随机缺失 加权插补 指数加权移动平均 改进的K近邻
下载PDF
基于组合加权k近邻分类的无线传感网络节点复制攻击检测方法
17
作者 赵晓峰 王平水 《传感技术学报》 CAS CSCD 北大核心 2024年第6期1056-1060,共5页
无线传感网络节点体积小,隐蔽性强,节点复制攻击检测的难度较大,为此提出一种基于组合加权k近邻分类的无线传感网络节点复制攻击检测方法。通过信标节点的空间位置数据与相距跳数得出各节点之间的相似程度,结合高斯径向基核函数求解未... 无线传感网络节点体积小,隐蔽性强,节点复制攻击检测的难度较大,为此提出一种基于组合加权k近邻分类的无线传感网络节点复制攻击检测方法。通过信标节点的空间位置数据与相距跳数得出各节点之间的相似程度,结合高斯径向基核函数求解未知节点的横轴、纵轴的空间坐标,确定各网络节点的空间位置;根据网络节点的属性特征与投票机制建立节点复制攻击模型,凭借组合加权k近邻分类法划分节点类型,并将结果传送至簇头节点,由簇头节点做出最后的仲裁,识别出节点复制攻击行为。仿真结果表明,所提方法的节点复制攻击检测率最大值为99.5%,最小值为97.9%,对节点复制攻击检测的耗时为5.41 s,通信开销数据包数量最大值为209个,最小值为81个。 展开更多
关键词 无线传感网络 攻击检测 组合加权k近邻分类 复制节点 部署区域 信标节点
下载PDF
2012—2022年山西省3A级以上景区空间分布特征及影响因素研究
18
作者 师永强 宋雪剑 +3 位作者 魏亚娟 耿巍 张新生 李话语 《云南大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第2期288-298,共11页
山西省具有丰富的旅游资源,但11个地市级旅游资源赋存和旅游经济发展不协调.以2012—2022年山西省3A级以上景区为研究对象,运用核密度估计分析、标准差椭圆、平均最近邻指数、不平衡指数和缓冲区分析等空间分析方法和数理统计分析方法,... 山西省具有丰富的旅游资源,但11个地市级旅游资源赋存和旅游经济发展不协调.以2012—2022年山西省3A级以上景区为研究对象,运用核密度估计分析、标准差椭圆、平均最近邻指数、不平衡指数和缓冲区分析等空间分析方法和数理统计分析方法,重点研究山西省3A级以上旅游景区的空间分布特征及其影响因素,从而为山西省合理有效地开发、配置旅游资源提供数据支撑.结果表明:(1)通过标准差椭圆和平均最近邻指数分析得出,山西省3A级以上旅游景区总体分布呈南北延伸,空间结构类型为集聚型,3A级以上旅游景区逐渐向晋南、晋东南发展;(2)通过核密度分析发现,各地级市3A级以上景区分布不均衡,景区空间分布密度区域有明显差异,高密度区域分布在太原市周边;(3)交通条件、城市等级、水系、地形地貌、经济水平均是影响3A级以上旅游景区空间分布的重要因素. 展开更多
关键词 3A级以上旅游景区 空间分布 最近邻距离法 影响因素 山西省
下载PDF
基于数字孪生与k-近邻算法的车间设备运行状态预测研究
19
作者 和征 李忠鹏 杨小红 《制造技术与机床》 北大核心 2024年第3期193-199,共7页
由于传统车间设备运行状态预测不能有效利用历史数据进行学习,实时响应能力有限,难以在复杂调度环境中取得良好效果,因此文章提出一种数字孪生与k-近邻算法相结合的车间设备运行状态预测模型。构建车间设备实体在信息空间的数字孪生模型... 由于传统车间设备运行状态预测不能有效利用历史数据进行学习,实时响应能力有限,难以在复杂调度环境中取得良好效果,因此文章提出一种数字孪生与k-近邻算法相结合的车间设备运行状态预测模型。构建车间设备实体在信息空间的数字孪生模型,并建立设备实体与模型之间的映射关系,从而获取实时特征数据,即设备的运行状态特征数据。运用k-近邻算法计算实时特征数据与历史数据之间的欧几里得距离,即计算设备当前运行状态与历史已知状态的相似度,最终通过前k个距离所对应的设备历史运行状态数据,预测设备的当前运行状态。该模型的本质是通过数字孪生的实时数据采集,获取指定设备运行状态特征数据,运用k-近邻算法预测设备的实时运行状态。相较以往研究,本研究贡献在于提高设备实时运行状态预测的准确率。如果将数字孪生、k-近邻算法与具备自我学习能力的相关算法相结合,模型的预测效果会更好。 展开更多
关键词 K-近邻算法 机器学习 数字孪生 车间设备运行状态预测
下载PDF
改进DPC聚类算法的离群点检测与解释方法
20
作者 周玉 夏浩 裴泽宣 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2024年第8期68-85,共18页
为解决全局离群点检测方法无法对局部离群点进行检测,以及局部异常因子在面对大量局部离群点时性能下降的问题,利用k近邻(KNN)和核密度估计方法(KDE)提出一种基于改进快速搜索和发现密度峰值聚类算法(KDPC)的离群点检测与解释方法,该方... 为解决全局离群点检测方法无法对局部离群点进行检测,以及局部异常因子在面对大量局部离群点时性能下降的问题,利用k近邻(KNN)和核密度估计方法(KDE)提出一种基于改进快速搜索和发现密度峰值聚类算法(KDPC)的离群点检测与解释方法,该方法能够同时对数据点的全局和局部进行分析。首先,利用k近邻和核密度估计方法计算数据点的局部密度,代替传统DPC算法中根据截断距离计算的局部密度。其次,将数据点的k近邻距离之和作为全局异常值,并通过KDPC聚类算法计算簇密度以及数据点的局部异常值。最后,将数据点的全局与局部异常值进行乘积作为最终异常得分,选取异常得分最高的Top-n作为离群点,通过构建全局-局部异常值决策图对全局和局部离群点进行解释。利用人工数据集和UCI数据集进行实验并与10种常用离群点检测方法进行比较。结果表明,该方法对全局和局部离群点都有着较高的检测精度和检测性能,并且AUC方面受k值影响较小。同时,利用该方法对NBA球员数据进行分析讨论,进一步证明了该方法的实用性和有效性。 展开更多
关键词 离群点检测 聚类 密度峰值 K近邻 核密度估计
下载PDF
上一页 1 2 212 下一页 到第
使用帮助 返回顶部