为减轻电力工作人员的巡检负担,实现变电站智能巡检,对变电站设备缺陷检测算法进行了研究。首先,利用数据增强方法对有限的初始数据集进行扩充,利用多种图像处理方法增加数据集的复杂度,生成考虑复杂光照环境的数据集;然后,采用自适应...为减轻电力工作人员的巡检负担,实现变电站智能巡检,对变电站设备缺陷检测算法进行了研究。首先,利用数据增强方法对有限的初始数据集进行扩充,利用多种图像处理方法增加数据集的复杂度,生成考虑复杂光照环境的数据集;然后,采用自适应空间特征融合(ASFF:Adaptively Spatial Feature Fusion)的方法缓解特征金字塔中不同尺度特征的不一致性问题,并引入Focal损失函数作为置信度损失函数以缓解正负样本不平衡的问题,利用改进的YOLOX-s(You Only Look Once X-s)网络模型设计了变电站缺陷检测算法;最后,将改进的YOLOX-s网络模型与其他深度学习算法的检测效果进行对比,实验结果表明,改进的YOLOX-s网络模型的综合检测效果较好,准确性和实时性均可以满足变电站设备缺陷检测任务。展开更多
脊柱侧弯是影响人类健康的疾病之一,Cobb角的准确计算是临床上确定脊柱侧弯分型和制定诊疗方案的关键。针对人工测量Cobb角存在耗时长、不够准确、效率低下等问题,本文设计了一种基于改进U-Net的脊柱侧弯Cobb角自动测量方法。由经验丰...脊柱侧弯是影响人类健康的疾病之一,Cobb角的准确计算是临床上确定脊柱侧弯分型和制定诊疗方案的关键。针对人工测量Cobb角存在耗时长、不够准确、效率低下等问题,本文设计了一种基于改进U-Net的脊柱侧弯Cobb角自动测量方法。由经验丰富的脊柱外科医生使用LabelMe工具对200例脊柱侧弯患者的X线片数据集进行标注。采用ResNet50作为主干网络改进基本的语义分割模型U-Net,并与另外2个语义分割模型DeeplabV3和PSPNet在脊柱侧弯X线片数据集上分别进行训练。实验结果表明,改进的U-Net模型的平均交并比(mean intersection over union,MIOU)值达到了94.72%,分别比PSPNet和DeeplabV3模型的MIOU值提升了5.36%和2.30%。最后,基于改进的U-Net模型设计了脊柱侧弯Cobb角的自动测量算法,并开发了可视化的自动测量软件。经过实际测试,发现在常规的电脑上输入一张患者的X线片,只需6.3 s即可自动计算Cobb角大小,其速度远快于医生手动测量,显著提高了医生的工作效率,表明本文设计的脊柱侧弯Cobb角自动测量方法是有效的。展开更多
文摘为减轻电力工作人员的巡检负担,实现变电站智能巡检,对变电站设备缺陷检测算法进行了研究。首先,利用数据增强方法对有限的初始数据集进行扩充,利用多种图像处理方法增加数据集的复杂度,生成考虑复杂光照环境的数据集;然后,采用自适应空间特征融合(ASFF:Adaptively Spatial Feature Fusion)的方法缓解特征金字塔中不同尺度特征的不一致性问题,并引入Focal损失函数作为置信度损失函数以缓解正负样本不平衡的问题,利用改进的YOLOX-s(You Only Look Once X-s)网络模型设计了变电站缺陷检测算法;最后,将改进的YOLOX-s网络模型与其他深度学习算法的检测效果进行对比,实验结果表明,改进的YOLOX-s网络模型的综合检测效果较好,准确性和实时性均可以满足变电站设备缺陷检测任务。
文摘脊柱侧弯是影响人类健康的疾病之一,Cobb角的准确计算是临床上确定脊柱侧弯分型和制定诊疗方案的关键。针对人工测量Cobb角存在耗时长、不够准确、效率低下等问题,本文设计了一种基于改进U-Net的脊柱侧弯Cobb角自动测量方法。由经验丰富的脊柱外科医生使用LabelMe工具对200例脊柱侧弯患者的X线片数据集进行标注。采用ResNet50作为主干网络改进基本的语义分割模型U-Net,并与另外2个语义分割模型DeeplabV3和PSPNet在脊柱侧弯X线片数据集上分别进行训练。实验结果表明,改进的U-Net模型的平均交并比(mean intersection over union,MIOU)值达到了94.72%,分别比PSPNet和DeeplabV3模型的MIOU值提升了5.36%和2.30%。最后,基于改进的U-Net模型设计了脊柱侧弯Cobb角的自动测量算法,并开发了可视化的自动测量软件。经过实际测试,发现在常规的电脑上输入一张患者的X线片,只需6.3 s即可自动计算Cobb角大小,其速度远快于医生手动测量,显著提高了医生的工作效率,表明本文设计的脊柱侧弯Cobb角自动测量方法是有效的。