Hypobaric hypoxia (HH) exposure can cause serious brain injury as well as life-threatening cerebral edema in severe cases. Previous studies on the mechanisms of HH-induced brain injury have been conducted primarily us...Hypobaric hypoxia (HH) exposure can cause serious brain injury as well as life-threatening cerebral edema in severe cases. Previous studies on the mechanisms of HH-induced brain injury have been conducted primarily using non-primate animal models that are genetically distant to humans, thus hindering the development of disease treatment. Here, we report that cynomolgus monkeys (Macaca fascicularis) exposed to acute HH developed human-like HH syndrome involving severe brain injury and abnormal behavior. Transcriptome profiling of white blood cells and brain tissue from monkeys exposed to increasing altitude revealed the central role of the HIF-1 and other novel signaling pathways, such as the vitamin D receptor (VDR) signaling pathway, in co-regulating HH-induced inflammation processes. We also observed profound transcriptomic alterations in brains after exposure to acute HH, including the activation of angiogenesis and impairment of aerobic respiration and protein folding processes, which likely underlie the pathological effects of HH-induced brain injury. Administration of progesterone (PROG) and steroid neuroprotectant 5α-androst-3β,5,6β-triol (TRIOL) significantly attenuated brain injuries and rescued the transcriptomic changes induced by acute HH. Functional investigation of the affected genes suggested that these two neuroprotectants protect the brain by targeting different pathways, with PROG enhancing erythropoiesis and TRIOL suppressing glutamate-induced excitotoxicity. Thus, this study advances our understanding of the pathology induced by acute HH and provides potential compounds for the development of neuroprotectant drugs for therapeutic treatment.展开更多
Cellular senescence and chronic inflammation in response to aging are considered to be indicators of brain aging;they have a great impact on the aging process and are the main risk factors for neurodegeneration.Review...Cellular senescence and chronic inflammation in response to aging are considered to be indicators of brain aging;they have a great impact on the aging process and are the main risk factors for neurodegeneration.Reviewing the microglial response to aging and neuroinflammation in neurodegenerative diseases will help understand the importance of microglia in neurodegenerative diseases.This review describes the origin and function of microglia and focuses on the role of different states of the microglial response to aging and chronic inflammation on the occurrence and development of neurodegenerative diseases,including Alzheimer's disease,Huntington's chorea,and Parkinson's disease.This review also describes the potential benefits of treating neurodegenerative diseases by modulating changes in microglial states.Therefore,inducing a shift from the neurotoxic to neuroprotective microglial state in neurodegenerative diseases induced by aging and chronic inflammation holds promise for the treatment of neurodegenerative diseases in the future.展开更多
Chaperone-mediated autophagy is one of three types of autophagy and is characterized by the selective degradation of proteins.Chaperone-mediated autophagy contributes to energy balance and helps maintain cellular home...Chaperone-mediated autophagy is one of three types of autophagy and is characterized by the selective degradation of proteins.Chaperone-mediated autophagy contributes to energy balance and helps maintain cellular homeostasis,while providing nutrients and support for cell survival.Chaperone-mediated autophagy activity can be detected in almost all cells,including neurons.Owing to the extreme sensitivity of neurons to their environmental changes,maintaining neuronal homeostasis is critical for neuronal growth and survival.Chaperone-mediated autophagy dysfunction is closely related to central nervous system diseases.It has been shown that neuronal damage and cell death are accompanied by chaperone-mediated autophagy dysfunction.Under certain conditions,regulation of chaperone-mediated autophagy activity attenuates neurotoxicity.In this paper,we review the changes in chaperone-mediated autophagy in neurodegenerative diseases,brain injury,glioma,and autoimmune diseases.We also summarize the most recent research progress on chaperone-mediated autophagy regulation and discuss the potential of chaperone-mediated autophagy as a therapeutic target for central nervous system diseases.展开更多
Stroke is a leading cause of mortality and disability worldwide.Ischemic cell death triggered by the compromised supply of blood oxygen and glucose is one of the major pathophysiology of strokeinduced brain injury.Imp...Stroke is a leading cause of mortality and disability worldwide.Ischemic cell death triggered by the compromised supply of blood oxygen and glucose is one of the major pathophysiology of strokeinduced brain injury.Impaired mitochondrial energy metabolism is observed minutes after stroke and is closely associated with the progression of neuropathology.Recently,a new type of posttranslational modification,known as lysine succinylation,has been recognized to play a significant role in mitochondrial energy metabolism after ischemia.However,the role of succinylation modification in cell metabolism after stroke and its regulation are not well understood.We aimed to review the effects of succinylation on energy metabolism,reactive oxygen species generation,and neuroinflammation,as well as Sirtuin 5 mediated desuccinylation after stroke.We also highlight the potential of targeting succinylation/desuccinylation as a promising strategy for the treatment of stroke.The succinylation level is dynamically regulated by the nonenzymatic or enzymatic transfer of a succinyl group to a protein on lysine residues and the removal of succinyl catalyzed by desuccinylases.Mounting evidence has suggested that succinylation can regulate the metabolic pathway through modulating the activity or stability of metabolic enzymes.Sirtuins,especially Sirtuin 5,are characterized for their desuccinylation activity and have been recognized as a critical regulator of metabolism through desuccinylating numerous metabolic enzymes.Imbalance between succinylation and desuccinylation has been implicated in the pathophysiology of stroke.Pharmacological agents that enhance the activity of Sirtuin 5 have been employed to promote desuccinylation and improve mitochondrial metabolism,and neuroprotective effects of these agents have been observed in experimental stroke studies.However,their therapeutic efficacy in stroke patients should be validated.展开更多
Traumatic brain injury is a serious and complex neurological condition that affects millions of people worldwide.Despite significant advancements in the field of medicine,effective treatments for traumatic brain injur...Traumatic brain injury is a serious and complex neurological condition that affects millions of people worldwide.Despite significant advancements in the field of medicine,effective treatments for traumatic brain injury remain limited.Recently,extracellular vesicles released from mesenchymal stem/stromal cells have emerged as a promising novel therapy for traumatic brain injury.Extracellular vesicles are small membrane-bound vesicles that are naturally released by cells,including those in the brain,and can be engineered to contain therapeutic cargo,such as anti-inflammatory molecules,growth factors,and microRNAs.When administered intravenously,extra cellular vesicles can cross the blood-brain barrier and deliver their cargos to the site of injury,where they can be taken up by recipient cells and modulate the inflammatory response,promote neuroregeneration,and improve functional outcomes.In preclinical studies,extracellular vesicle-based therapies have shown promising results in promoting recove ry after traumatic brain injury,including reducing neuronal damage,improving cognitive function,and enhancing motor recovery.While further research is needed to establish the safety and efficacy of extra cellular vesicle-based therapies in humans,extra cellular vesicles represent a promising novel approach for the treatment of traumatic brain injury.In this review,we summarize mesenchymal ste m/stromal cell-de rived extracellular vesicles as a cell-free therapy for traumatic brain injury via neuroprotection and neurorestoration and brainderived extracellular vesicles as potential biofluid biomarkers in small and large animal models of traumatic brain injury.展开更多
Type-B monoamine oxidase inhibitors,encompassing selegiline,rasagiline,and safinamide,are available to treat Parkinson's disease.These drugs ameliorate motor symptoms and improve motor fluctuation in the advanced ...Type-B monoamine oxidase inhibitors,encompassing selegiline,rasagiline,and safinamide,are available to treat Parkinson's disease.These drugs ameliorate motor symptoms and improve motor fluctuation in the advanced stages of the disease.There is also evidence suppo rting the benefit of type-B monoamine oxidase inhibitors on non-motor symptoms of Parkinson's disease,such as mood deflection,cognitive impairment,sleep disturbances,and fatigue.Preclinical studies indicate that type-B monoamine oxidase inhibitors hold a strong neuroprotective potential in Parkinson's disease and other neurodegenerative diseases for reducing oxidative stress and stimulating the production and release of neurotrophic factors,particularly glial cell line-derived neurotrophic factor,which suppo rt dopaminergic neurons.Besides,safinamide may interfere with neurodegenerative mechanisms,countera cting excessive glutamate overdrive in basal ganglia motor circuit and reducing death from excitotoxicity.Due to the dual mechanism of action,the new generation of type-B monoamine oxidase inhibitors,including safinamide,is gaining interest in other neurological pathologies,and many supporting preclinical studies are now available.The potential fields of application concern epilepsy,Duchenne muscular dystrophy,multiple scle rosis,and above all,ischemic brain injury.The purpose of this review is to investigate the preclinical and clinical pharmacology of selegiline,rasagiline,and safinamide in Parkinson's disease and beyond,focusing on possible future therapeutic applications.展开更多
We previously showed that hydrogen sulfide(H2S)has a neuroprotective effect in the context of hypoxic ischemic brain injury in neonatal mice.However,the precise mechanism underlying the role of H2S in this situation r...We previously showed that hydrogen sulfide(H2S)has a neuroprotective effect in the context of hypoxic ischemic brain injury in neonatal mice.However,the precise mechanism underlying the role of H2S in this situation remains unclear.In this study,we used a neonatal mouse model of hypoxic ischemic brain injury and a lipopolysaccharide-stimulated BV2 cell model and found that treatment with L-cysteine,a H2S precursor,attenuated the cerebral infarction and cerebral atrophy induced by hypoxia and ischemia and increased the expression of miR-9-5p and cystathionineβsynthase(a major H2S synthetase in the brain)in the prefrontal cortex.We also found that an miR-9-5p inhibitor blocked the expression of cystathionineβsynthase in the prefrontal cortex in mice with brain injury caused by hypoxia and ischemia.Furthermore,miR-9-5p overexpression increased cystathionine-β-synthase and H2S expression in the injured prefrontal cortex of mice with hypoxic ischemic brain injury.L-cysteine decreased the expression of CXCL11,an miR-9-5p target gene,in the prefrontal cortex of the mouse model and in lipopolysaccharide-stimulated BV-2 cells and increased the levels of proinflammatory cytokines BNIP3,FSTL1,SOCS2 and SOCS5,while treatment with an miR-9-5p inhibitor reversed these changes.These findings suggest that H2S can reduce neuroinflammation in a neonatal mouse model of hypoxic ischemic brain injury through regulating the miR-9-5p/CXCL11 axis and restoringβ-synthase expression,thereby playing a role in reducing neuroinflammation in hypoxic ischemic brain injury.展开更多
Therapeutic progress in neurodegenerative conditions such as Parkinson’s disease has been hampered by a lack of detailed knowledge of its molecular etiology.The advancements in genetics and genomics have provided fun...Therapeutic progress in neurodegenerative conditions such as Parkinson’s disease has been hampered by a lack of detailed knowledge of its molecular etiology.The advancements in genetics and genomics have provided fundamental insights into specific protein players and the cellular processes involved in the onset of disease.In this respect,the autophagy-lysosome system has emerged in recent years as a strong point of convergence for genetics,genomics,and pathologic indications,spanning both familial and idiopathic Parkinson’s disease.Most,if not all,genes linked to familial disease are involved,in a regulatory capacity,in lysosome function(e.g.,LRRK2,alpha-synuclein,VPS35,Parkin,and PINK1).Moreover,the majority of genomic loci associated with increased risk of idiopathic Parkinson’s cluster in lysosome biology and regulation(GBA as the prime example).Lastly,neuropathologic evidence showed alterations in lysosome markers in autoptic material that,coupled to the alpha-synuclein proteinopathy that defines the disease,strongly indicate an alteration in functionality.In this Brief Review article,I present a personal perspective on the molecular and cellular involvement of lysosome biology in Parkinson’s pathogenesis,aiming at a larger vision on the events underlying the onset of the disease.The attempts at targeting autophagy for therapeutic purposes in Parkinson’s have been mostly aimed at“indiscriminately”enhancing its activity to promote the degradation and elimination of aggregate protein accumulations,such as alpha-synuclein Lewy bodies.However,this approach is based on the assumption that protein pathology is the root cause of disease,while pre-pathology and pre-degeneration dysfunctions have been largely observed in clinical and pre-clinical settings.In addition,it has been reported that unspecific boosting of autophagy can be detrimental.Thus,it is important to understand the mechanisms of specific autophagy forms and,even more,the adjustment of specific lysosome functionalities.Indeed,lysosomes exert fine signaling capacities in addition to their catabolic roles and might participate in the regulation of neuronal and glial cell functions.Here,I discuss hypotheses on these possible mechanisms,their links with etiologic and risk factors for Parkinson’s disease,and how they could be targeted for disease-modifying purposes.展开更多
Intracerebral hemorrhage is a life-threatening condition with a high fatality rate and severe sequelae.However,there is currently no treatment available for intracerebral hemorrhage,unlike for other stroke subtypes.Re...Intracerebral hemorrhage is a life-threatening condition with a high fatality rate and severe sequelae.However,there is currently no treatment available for intracerebral hemorrhage,unlike for other stroke subtypes.Recent studies have indicated that mitochondrial dysfunction and mitophagy likely relate to the pathophysiology of intracerebral hemorrhage.Mitophagy,or selective autophagy of mitochondria,is an essential pathway to preserve mitochondrial homeostasis by clearing up damaged mitochondria.Mitophagy markedly contributes to the reduction of secondary brain injury caused by mitochondrial dysfunction after intracerebral hemorrhage.This review provides an overview of the mitochondrial dysfunction that occurs after intracerebral hemorrhage and the underlying mechanisms regarding how mitophagy regulates it,and discusses the new direction of therapeutic strategies targeting mitophagy for intracerebral hemorrhage,aiming to determine the close connection between mitophagy and intracerebral hemorrhage and identify new therapies to modulate mitophagy after intracerebral hemorrhage.In conclusion,although only a small number of drugs modulating mitophagy in intracerebral hemorrhage have been found thus far,most of which are in the preclinical stage and require further investigation,mitophagy is still a very valid and promising therapeutic target for intracerebral hemorrhage in the long run.展开更多
Traumatic spinal cord injury is a devastating disorder chara cterized by sensory,motor,and autonomic dysfunction that seve rely compromises an individual's ability to perform activities of daily living.These adve ...Traumatic spinal cord injury is a devastating disorder chara cterized by sensory,motor,and autonomic dysfunction that seve rely compromises an individual's ability to perform activities of daily living.These adve rse outcomes are closely related to the complex mechanism of spinal cord injury,the limited regenerative capacity of central neurons,and the inhibitory environment fo rmed by traumatic injury.Disruption to the microcirculation is an important pathophysiological mechanism of spinal cord injury.A number of therapeutic agents have been shown to improve the injury environment,mitigate secondary damage,and/or promote regeneration and repair.Among them,the spinal cord microcirculation has become an important target for the treatment of spinal cord injury.Drug inte rventions targeting the microcirculation can improve the microenvironment and promote recovery following spinal cord injury.These drugs target the structure and function of the spinal cord microcirculation and are essential for maintaining the normal function of spinal neuro ns,axons,and glial cells.This review discusses the pathophysiological role of spinal cord microcirculation in spinal cord injury,including its structure and histopathological changes.Further,it summarizes the progress of drug therapies targeting the spinal cord mic rocirc ulation after spinal cord injury.展开更多
Spinal cord injury is a serious disease of the central nervous system involving irreversible nerve injury and various organ system injuries.At present,no effective clinical treatment exists.As one of the artificial hi...Spinal cord injury is a serious disease of the central nervous system involving irreversible nerve injury and various organ system injuries.At present,no effective clinical treatment exists.As one of the artificial hibernation techniques,mild hypothermia has preliminarily confirmed its clinical effect on spinal cord injury.However,its technical defects and barriers,along with serious clinical side effects,restrict its clinical application for spinal cord injury.Artificial hibernation is a futureoriented disruptive technology for human life support.It involves endogenous hibernation inducers and hibernation-related central neuromodulation that activate particular neurons,reduce the central constant temperature setting point,disrupt the normal constant body temperature,make the body adapt"to the external cold environment,and reduce the physiological resistance to cold stimulation.Thus,studying the artificial hibernation mechanism may help develop new treatment strategies more suitable for clinical use than the cooling method of mild hypothermia technology.This review introduces artificial hibernation technologies,including mild hypothermia technology,hibernation inducers,and hibernation-related central neuromodulation technology.It summarizes the relevant research on hypothermia and hibernation for organ and nerve protection.These studies show that artificial hibernation technologies have therapeutic significance on nerve injury after spinal co rd injury through inflammatory inhibition,immunosuppression,oxidative defense,and possible central protection.It also promotes the repair and protection of res pirato ry and digestive,cardiovascular,locomoto r,urinary,and endocrine systems.This review provides new insights for the clinical treatment of nerve and multiple organ protection after spinal cord injury thanks to artificial hibernation.At present,artificial hibernation technology is not mature,and research fa ces various challenges.Neve rtheless,the effort is wo rthwhile for the future development of medicine.展开更多
Studies have shown that C1q/tumor necrosis factor-related protein-6 (CTRP6) can alleviate renal ischemia/reperfusion injury in mice. However, its role in the brain remains poorly understood. To investigate the role of...Studies have shown that C1q/tumor necrosis factor-related protein-6 (CTRP6) can alleviate renal ischemia/reperfusion injury in mice. However, its role in the brain remains poorly understood. To investigate the role of CTRP6 in cerebral ischemia/reperfusion injury associated with diabetes mellitus, a diabetes mellitus mouse model of cerebral ischemia/reperfusion injury was established by occlusion of the middle cerebral artery. To overexpress CTRP6 in the brain, an adeno-associated virus carrying CTRP6 was injected into the lateral ventricle. The result was that oxygen injury and inflammation in brain tissue were clearly attenuated, and the number of neurons was greatly reduced. In vitro experiments showed that CTRP6 knockout exacerbated oxidative damage, inflammatory reaction, and apoptosis in cerebral cortical neurons in high glucose hypoxia-simulated diabetic cerebral ischemia/reperfusion injury. CTRP6 overexpression enhanced the sirtuin-1 signaling pathway in diabetic brains after ischemia/reperfusion injury. To investigate the mechanism underlying these effects, we examined mice with depletion of brain tissue-specific sirtuin-1. CTRP6-like protection was achieved by activating the sirtuin-1 signaling pathway. Taken together, these results indicate that CTRP6 likely attenuates cerebral ischemia/reperfusion injury through activation of the sirtuin-1 signaling pathway.展开更多
Cannabinoids are lipophilic substances derived from Cannabis sativa that can exert a variety of effects in the human body.They have been studied in cellular and animal models as well as in human clinical trials for th...Cannabinoids are lipophilic substances derived from Cannabis sativa that can exert a variety of effects in the human body.They have been studied in cellular and animal models as well as in human clinical trials for their therapeutic benefits in several human diseases.Some of these include central nervous system(CNS)diseases and dysfunctions such as forms of epilepsy,multiple sclerosis,Parkinson’s disease,pain and neuropsychiatric disorders.In addition,the endogenously produced cannabinoid lipids,endocannabinoids,are critical for normal CNS function,and if controlled or modified,may represent an additional therapeutic avenue for CNS diseases.This review discusses in vitro cellular,ex vivo tissue and in vivo animal model studies on cannabinoids and their utility as therapeutics in multiple CNS pathologies.In addition,the review provides an overview on the use of cannabinoids in human clinical trials for a variety of CNS diseases.Cannabinoids and endocannabinoids hold promise for use as disease modifiers and therapeutic agents for the prevention or treatment of neurodegenerative diseases and neurological disorders.展开更多
In multiple sclerosis,only immunomodulato ry and immunosuppressive drugs are recognized as disease-modifying therapies.Howeve r,in recent years,several data from pre-clinical and clinical studies suggested a possible ...In multiple sclerosis,only immunomodulato ry and immunosuppressive drugs are recognized as disease-modifying therapies.Howeve r,in recent years,several data from pre-clinical and clinical studies suggested a possible role of physical exe rcise as disease-modifying therapy in multiple sclerosis.Current evidence is sparse and often conflicting,and the mechanisms underlying the neuroprotective and antinflammatory role of exercise in multiple sclerosis have not been fully elucidated.Data,mainly derived from pre-clinical studies,suggest that exe rcise could enhance longterm potentiation and thus neuroplasticity,could reduce neuroinflammation and synaptopathy,and dampen astrogliosis and microgliosis.In humans,most trials focused on direct clinical and MRI outcomes,as investigating synaptic,neuroinflammato ry,and pathological changes is not straightfo rward compared to animal models.The present review analyzed current evidence and limitations in research concerning the potential disease-modifying therapy effects of exercise in multiple sclerosis in animal models and human studies.展开更多
Memory loss and dementia are major public health concerns with a substantial economic burden.Oxidative stress has been shown to play a crucial role in the pathophysiology of hippocampal damage-induced memory impairmen...Memory loss and dementia are major public health concerns with a substantial economic burden.Oxidative stress has been shown to play a crucial role in the pathophysiology of hippocampal damage-induced memory impairment.To investigate whether the antioxidant and anti-inflammatory compound vanillyla cetone(zingerone) can protect against hippocampal damage and memory loss induced by cadmium chloride(CdCl_(2)) administration in rats,we explo red the potential involvement of the nuclear factor erythroid 2-related factor 2(Nrf2) signaling pathway,which is known to modulate oxidative stress and inflammation.Sixty healt hy male Wistar rats were divided into five groups:vehicle-treated(control),vanillylacetone,CdCl_(2),vanillylacetone+ CdCl_(2),vanillylacetone+ CdCl_(2)+ brusatol(a selective pharmacological N rf2inhibitor) groups.Vanillylacetone effectively attenuated CdCl_(2)-induced damage in the dental gyrus of the hippocampus and improved the memory function assessed by the Morris Water Maze test.Additionally,vanillylacetone markedly decreased the hippocampal tissue levels of inflammatory biomarkers(interleukin-6,tumor necrosis factor-α,intracellular cell adhesive molecules) and apoptosis biomarkers(Bax and cleaved caspase-3).The control and CdCl_(2)-treated groups treated with va nillylacetone showed reduced generation of reactive oxygen species,decreased malondialdehyde levels,and increased superoxide dismutase and glutathione activities,along with significant elevation of nuclear Nrf2 mRNA and protein expression in hippocampal tissue.All the protective effects of vanillylacetone we re substantially blocked by the co-administration of brusatol(a selective N rf2 inhibitor).Va nillylacetone mitigated hippocampal damage and memory loss induced by CdCl_(2),at least in part, by activating the nuclear transcription factor Nrf2.Additionally,vanillylacetone exerted its potent antioxidant and antiinflammatory actions.展开更多
Pyrroloquinoline quinone is a quinone described as a cofactor for many bacterial dehydrogenases and is reported to exert an effect on metabolism in mammalian cells/tissues.Pyrroloquinoline quinone is present in the di...Pyrroloquinoline quinone is a quinone described as a cofactor for many bacterial dehydrogenases and is reported to exert an effect on metabolism in mammalian cells/tissues.Pyrroloquinoline quinone is present in the diet being available in foodstuffs,conferring the potential of this compound to be supplemented by dietary administration.Pyrroloquinoline quinone’s nutritional role in mammalian health is supported by the extensive deficits in reproduction,growth,and immunity resulting from the dietary absence of pyrroloquinoline quinone,and as such,pyrroloquinoline quinone has been considered as a“new vitamin.”Although the classification of pyrroloquinoline quinone as a vitamin needs to be properly established,the wide range of benefits for health provided has been reported in many studies.In this respect,pyrroloquinoline quinone seems to be particularly involved in regulating cell signaling pathways that promote metabolic and mitochondrial processes in many experimental contexts,thus dictating the rationale to consider pyrroloquinoline quinone as a vital compound for mammalian life.Through the regulation of different metabolic mechanisms,pyrroloquinoline quinone may improve clinical deficits where dysfunctional metabolism and mitochondrial activity contribute to induce cell damage and death.Pyrroloquinoline quinone has been demonstrated to have neuroprotective properties in different experimental models of neurodegeneration,although the link between pyrroloquinoline quinone-promoted metabolism and improved neuronal viability in some of such contexts is still to be fully elucidated.Here,we review the general properties of pyrroloquinoline quinone and its capacity to modulate metabolic and mitochondrial mechanisms in physiological contexts.In addition,we analyze the neuroprotective properties of pyrroloquinoline quinone in different neurodegenerative conditions and consider future perspectives for pyrroloquinoline quinone’s potential in health and disease.展开更多
The therapeutic potential of Annexin A1,an important member of the Annexin superfamily,has become evident in results of experiments with multiple human systems and animal models.The anti-inflammatory and pro-resolving...The therapeutic potential of Annexin A1,an important member of the Annexin superfamily,has become evident in results of experiments with multiple human systems and animal models.The anti-inflammatory and pro-resolving effects of Annexin A1 are characteristic of pathologies involving the nervous system.In this review,we initially describe the expression sites of Annexin A1,then outline the mechanisms by which Annexin A1 maintains the neurological homeostasis through either formyl peptide receptor 2 or other molecular approaches;and,finally,we discuss the neuroregenerative potential qualities of Annexin A1.The eye and the nervous system are anatomically and functionally connected,but the association between visual system pathogenesis,especially in the retina,and Annexin A1 alterations has not been well summarized.Therefore,we explain the beneficial effects of Annexin A1 for ocular diseases,especially for retinal diseases and glaucoma on the basis of published findings,and we explore present and future delivery strategies for Annexin A1 to the retina.展开更多
Two selenium(Se)-containing peptides from Se-enriched rice,TSeMMM and SeMDPGQQ,possess neuroprotective potency against lead(Pb2+)-induced cytotoxicity.However,the crosstalk between mRNA and microRNAs(miRNA)involved in...Two selenium(Se)-containing peptides from Se-enriched rice,TSeMMM and SeMDPGQQ,possess neuroprotective potency against lead(Pb2+)-induced cytotoxicity.However,the crosstalk between mRNA and microRNAs(miRNA)involved in the neuroprotection mechanism remains to be elucidated.In this study,RNA-sequencing and miRNA-sequencing were used to independently identify differentially expressed mRNAs and small RNAs profiles in Pb^(2+)-treated primary fetal rat cortical neurons and then the correlated miRNA-mRNA target pairs were obtained.It was found that 34 mRNAs related to oxidative phosphorylation could be reversed by pretreatment of TSeMMM and SeMDPGQQ.The protective effect of TSeMMM and SeMDPGQQ was mediated by upregulation of miR-107-3p,which downregulates the ATPase H+transporting V0 subunit e1(Atp6v0e1)mRNA level.A zebrafish model was applied to verify the relevance between the targeted mRNA and miRNA by real-time quantitative PCR.The results indicated that miR-107-3p was a potential therapeutic target to achieve neuroprotection of Se-containing peptides via stimulation of Atp6v0e1.展开更多
Hericium erinaceus is a nutritious edible and medicinal fungi,rich in a variety of functional active ingredients,with various physiological functions such as antioxidation,anticancer,and enhancing immunity.It is also ...Hericium erinaceus is a nutritious edible and medicinal fungi,rich in a variety of functional active ingredients,with various physiological functions such as antioxidation,anticancer,and enhancing immunity.It is also effective in protecting the digestive system and preventing neurodegenerative diseases.In this review paper,we summarize the sources,structures and efficacies of the main active components in H.erinaceus fruiting body,mycelium,and culture media,and update the latest research progress on their biological activities and the related molecular mechanisms.Based on this information,we provide detailed challenges in current research,industrialization and information on the active ingredients of H.erinaceus.Perspectives for future studies and new applications of H.erinaceus are proposed.展开更多
Taurine is a sulfur-containing,semi-essential amino acid that occurs naturally in the body.It alternates between inflammation and oxidative stress-mediated injury in various disease models.As part of its limiting func...Taurine is a sulfur-containing,semi-essential amino acid that occurs naturally in the body.It alternates between inflammation and oxidative stress-mediated injury in various disease models.As part of its limiting functions,taurine also modulates endoplasmic reticulum stress,Ca^(2+)homeostasis,and neuronal activity at the molecular level.Taurine effectively protects against a number of neurological disorders,including stro ke,epilepsy,cerebral ischemia,memory dysfunction,and spinal cord injury.Although various therapies are available,effective management of these disorders remains a global challenge.Approximately 30 million people are affected worldwide.The design of taurine fo rmation co uld lead to potential drugs/supplements for the health maintenance and treatment of central nervous system disorders.The general neuroprotective effects of taurine and the various possible underlying mechanisms are discussed in this review.This article is a good resource for understanding the general effects of taurine on various diseases.Given the strong evidence for the neuropharmacological efficacy of taurine in various experimental paradigms,it is concluded that this molecule should be considered and further investigated as a potential candidate for neurotherapeutics,with emphasis on mechanism and clinical studies to determine efficacy.展开更多
基金supported by the National Natural Science Foundation of China(81773711)to W.Y.Strategic Priority Research Program of the Chinese Academy of Sciences(XDB13000000)+6 种基金Lundbeck Foundation Grant(R190-2014-2827)Carlsberg Foundation Grant(CF16-0663)to G.J.Z.Science and Technology Program of Guangzhou,China(201704020103)to W.Y.Introduction of Innovative R&D Team Program of Guangdong Province(2013Y104)Leading Talent Project in Science and Technology of Guangzhou Development District(2019-L002)National Major Scientific and Technological Special Project for “Significant New Drugs Development”(2016ZX09101026)to S.Z.L.Key Projects of the Military Science and Technology PLA(AWS14C007 and AWS16J023)to Y.Q.G
文摘Hypobaric hypoxia (HH) exposure can cause serious brain injury as well as life-threatening cerebral edema in severe cases. Previous studies on the mechanisms of HH-induced brain injury have been conducted primarily using non-primate animal models that are genetically distant to humans, thus hindering the development of disease treatment. Here, we report that cynomolgus monkeys (Macaca fascicularis) exposed to acute HH developed human-like HH syndrome involving severe brain injury and abnormal behavior. Transcriptome profiling of white blood cells and brain tissue from monkeys exposed to increasing altitude revealed the central role of the HIF-1 and other novel signaling pathways, such as the vitamin D receptor (VDR) signaling pathway, in co-regulating HH-induced inflammation processes. We also observed profound transcriptomic alterations in brains after exposure to acute HH, including the activation of angiogenesis and impairment of aerobic respiration and protein folding processes, which likely underlie the pathological effects of HH-induced brain injury. Administration of progesterone (PROG) and steroid neuroprotectant 5α-androst-3β,5,6β-triol (TRIOL) significantly attenuated brain injuries and rescued the transcriptomic changes induced by acute HH. Functional investigation of the affected genes suggested that these two neuroprotectants protect the brain by targeting different pathways, with PROG enhancing erythropoiesis and TRIOL suppressing glutamate-induced excitotoxicity. Thus, this study advances our understanding of the pathology induced by acute HH and provides potential compounds for the development of neuroprotectant drugs for therapeutic treatment.
基金supported partly by the National Natural Science Foundation of China,Nos.32161143021 and 81271410the Natural Science Foundation of Henan Province of China,No.182300410313(all to JW)。
文摘Cellular senescence and chronic inflammation in response to aging are considered to be indicators of brain aging;they have a great impact on the aging process and are the main risk factors for neurodegeneration.Reviewing the microglial response to aging and neuroinflammation in neurodegenerative diseases will help understand the importance of microglia in neurodegenerative diseases.This review describes the origin and function of microglia and focuses on the role of different states of the microglial response to aging and chronic inflammation on the occurrence and development of neurodegenerative diseases,including Alzheimer's disease,Huntington's chorea,and Parkinson's disease.This review also describes the potential benefits of treating neurodegenerative diseases by modulating changes in microglial states.Therefore,inducing a shift from the neurotoxic to neuroprotective microglial state in neurodegenerative diseases induced by aging and chronic inflammation holds promise for the treatment of neurodegenerative diseases in the future.
基金supported by the National Nature Science Foundation of China,Nos.81871603(to XZ)and 82171322(to ZF)Discipline Boost Program of the First Affiliated Hospital of Air Force Military Medical University,No.XJZT21J08(to XZ)the Natural Science Foundation of Shaanxi Province of China,No.2022KJXX-102(to ZF)。
文摘Chaperone-mediated autophagy is one of three types of autophagy and is characterized by the selective degradation of proteins.Chaperone-mediated autophagy contributes to energy balance and helps maintain cellular homeostasis,while providing nutrients and support for cell survival.Chaperone-mediated autophagy activity can be detected in almost all cells,including neurons.Owing to the extreme sensitivity of neurons to their environmental changes,maintaining neuronal homeostasis is critical for neuronal growth and survival.Chaperone-mediated autophagy dysfunction is closely related to central nervous system diseases.It has been shown that neuronal damage and cell death are accompanied by chaperone-mediated autophagy dysfunction.Under certain conditions,regulation of chaperone-mediated autophagy activity attenuates neurotoxicity.In this paper,we review the changes in chaperone-mediated autophagy in neurodegenerative diseases,brain injury,glioma,and autoimmune diseases.We also summarize the most recent research progress on chaperone-mediated autophagy regulation and discuss the potential of chaperone-mediated autophagy as a therapeutic target for central nervous system diseases.
基金supported by the National Natural Science Foundation of China,No.82071283(to QH)the Natural Science Foundation of Shanghai,No.22ZR1437700(to QH)。
文摘Stroke is a leading cause of mortality and disability worldwide.Ischemic cell death triggered by the compromised supply of blood oxygen and glucose is one of the major pathophysiology of strokeinduced brain injury.Impaired mitochondrial energy metabolism is observed minutes after stroke and is closely associated with the progression of neuropathology.Recently,a new type of posttranslational modification,known as lysine succinylation,has been recognized to play a significant role in mitochondrial energy metabolism after ischemia.However,the role of succinylation modification in cell metabolism after stroke and its regulation are not well understood.We aimed to review the effects of succinylation on energy metabolism,reactive oxygen species generation,and neuroinflammation,as well as Sirtuin 5 mediated desuccinylation after stroke.We also highlight the potential of targeting succinylation/desuccinylation as a promising strategy for the treatment of stroke.The succinylation level is dynamically regulated by the nonenzymatic or enzymatic transfer of a succinyl group to a protein on lysine residues and the removal of succinyl catalyzed by desuccinylases.Mounting evidence has suggested that succinylation can regulate the metabolic pathway through modulating the activity or stability of metabolic enzymes.Sirtuins,especially Sirtuin 5,are characterized for their desuccinylation activity and have been recognized as a critical regulator of metabolism through desuccinylating numerous metabolic enzymes.Imbalance between succinylation and desuccinylation has been implicated in the pathophysiology of stroke.Pharmacological agents that enhance the activity of Sirtuin 5 have been employed to promote desuccinylation and improve mitochondrial metabolism,and neuroprotective effects of these agents have been observed in experimental stroke studies.However,their therapeutic efficacy in stroke patients should be validated.
基金supported by Notional Institutes of Health Grant,No.1R01NS100710-01A1(to YX)。
文摘Traumatic brain injury is a serious and complex neurological condition that affects millions of people worldwide.Despite significant advancements in the field of medicine,effective treatments for traumatic brain injury remain limited.Recently,extracellular vesicles released from mesenchymal stem/stromal cells have emerged as a promising novel therapy for traumatic brain injury.Extracellular vesicles are small membrane-bound vesicles that are naturally released by cells,including those in the brain,and can be engineered to contain therapeutic cargo,such as anti-inflammatory molecules,growth factors,and microRNAs.When administered intravenously,extra cellular vesicles can cross the blood-brain barrier and deliver their cargos to the site of injury,where they can be taken up by recipient cells and modulate the inflammatory response,promote neuroregeneration,and improve functional outcomes.In preclinical studies,extracellular vesicle-based therapies have shown promising results in promoting recove ry after traumatic brain injury,including reducing neuronal damage,improving cognitive function,and enhancing motor recovery.While further research is needed to establish the safety and efficacy of extra cellular vesicle-based therapies in humans,extra cellular vesicles represent a promising novel approach for the treatment of traumatic brain injury.In this review,we summarize mesenchymal ste m/stromal cell-de rived extracellular vesicles as a cell-free therapy for traumatic brain injury via neuroprotection and neurorestoration and brainderived extracellular vesicles as potential biofluid biomarkers in small and large animal models of traumatic brain injury.
文摘Type-B monoamine oxidase inhibitors,encompassing selegiline,rasagiline,and safinamide,are available to treat Parkinson's disease.These drugs ameliorate motor symptoms and improve motor fluctuation in the advanced stages of the disease.There is also evidence suppo rting the benefit of type-B monoamine oxidase inhibitors on non-motor symptoms of Parkinson's disease,such as mood deflection,cognitive impairment,sleep disturbances,and fatigue.Preclinical studies indicate that type-B monoamine oxidase inhibitors hold a strong neuroprotective potential in Parkinson's disease and other neurodegenerative diseases for reducing oxidative stress and stimulating the production and release of neurotrophic factors,particularly glial cell line-derived neurotrophic factor,which suppo rt dopaminergic neurons.Besides,safinamide may interfere with neurodegenerative mechanisms,countera cting excessive glutamate overdrive in basal ganglia motor circuit and reducing death from excitotoxicity.Due to the dual mechanism of action,the new generation of type-B monoamine oxidase inhibitors,including safinamide,is gaining interest in other neurological pathologies,and many supporting preclinical studies are now available.The potential fields of application concern epilepsy,Duchenne muscular dystrophy,multiple scle rosis,and above all,ischemic brain injury.The purpose of this review is to investigate the preclinical and clinical pharmacology of selegiline,rasagiline,and safinamide in Parkinson's disease and beyond,focusing on possible future therapeutic applications.
基金supported by the National Natural Science Foundation of China,Nos.82271327(to ZW),82072535(to ZW),81873768(to ZW),and 82001253(to TL).
文摘We previously showed that hydrogen sulfide(H2S)has a neuroprotective effect in the context of hypoxic ischemic brain injury in neonatal mice.However,the precise mechanism underlying the role of H2S in this situation remains unclear.In this study,we used a neonatal mouse model of hypoxic ischemic brain injury and a lipopolysaccharide-stimulated BV2 cell model and found that treatment with L-cysteine,a H2S precursor,attenuated the cerebral infarction and cerebral atrophy induced by hypoxia and ischemia and increased the expression of miR-9-5p and cystathionineβsynthase(a major H2S synthetase in the brain)in the prefrontal cortex.We also found that an miR-9-5p inhibitor blocked the expression of cystathionineβsynthase in the prefrontal cortex in mice with brain injury caused by hypoxia and ischemia.Furthermore,miR-9-5p overexpression increased cystathionine-β-synthase and H2S expression in the injured prefrontal cortex of mice with hypoxic ischemic brain injury.L-cysteine decreased the expression of CXCL11,an miR-9-5p target gene,in the prefrontal cortex of the mouse model and in lipopolysaccharide-stimulated BV-2 cells and increased the levels of proinflammatory cytokines BNIP3,FSTL1,SOCS2 and SOCS5,while treatment with an miR-9-5p inhibitor reversed these changes.These findings suggest that H2S can reduce neuroinflammation in a neonatal mouse model of hypoxic ischemic brain injury through regulating the miR-9-5p/CXCL11 axis and restoringβ-synthase expression,thereby playing a role in reducing neuroinflammation in hypoxic ischemic brain injury.
基金supported by grants from Parkinson Canada,The Weston Brain Foundation and the Euregio Science Fund(to MV).
文摘Therapeutic progress in neurodegenerative conditions such as Parkinson’s disease has been hampered by a lack of detailed knowledge of its molecular etiology.The advancements in genetics and genomics have provided fundamental insights into specific protein players and the cellular processes involved in the onset of disease.In this respect,the autophagy-lysosome system has emerged in recent years as a strong point of convergence for genetics,genomics,and pathologic indications,spanning both familial and idiopathic Parkinson’s disease.Most,if not all,genes linked to familial disease are involved,in a regulatory capacity,in lysosome function(e.g.,LRRK2,alpha-synuclein,VPS35,Parkin,and PINK1).Moreover,the majority of genomic loci associated with increased risk of idiopathic Parkinson’s cluster in lysosome biology and regulation(GBA as the prime example).Lastly,neuropathologic evidence showed alterations in lysosome markers in autoptic material that,coupled to the alpha-synuclein proteinopathy that defines the disease,strongly indicate an alteration in functionality.In this Brief Review article,I present a personal perspective on the molecular and cellular involvement of lysosome biology in Parkinson’s pathogenesis,aiming at a larger vision on the events underlying the onset of the disease.The attempts at targeting autophagy for therapeutic purposes in Parkinson’s have been mostly aimed at“indiscriminately”enhancing its activity to promote the degradation and elimination of aggregate protein accumulations,such as alpha-synuclein Lewy bodies.However,this approach is based on the assumption that protein pathology is the root cause of disease,while pre-pathology and pre-degeneration dysfunctions have been largely observed in clinical and pre-clinical settings.In addition,it has been reported that unspecific boosting of autophagy can be detrimental.Thus,it is important to understand the mechanisms of specific autophagy forms and,even more,the adjustment of specific lysosome functionalities.Indeed,lysosomes exert fine signaling capacities in addition to their catabolic roles and might participate in the regulation of neuronal and glial cell functions.Here,I discuss hypotheses on these possible mechanisms,their links with etiologic and risk factors for Parkinson’s disease,and how they could be targeted for disease-modifying purposes.
基金supported by the National Natural Science Foundation of China,Nos.82071382(to MZ),81601306(to HS)The Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)(to MZ)+5 种基金Jiangsu 333 High-Level Talent Training Project(2022)(to HS)The Jiangsu Maternal and Child Health Research Key Project,No.F202013(to HS)Jiangsu Talent Youth Medical Program,No.QNRC2016245(to HS)Shanghai Key Lab of Forensic Medicine,No.KF2102(to MZ)Suzhou Science and Technology Development Project,No.SYS2020089(to MZ)The Fifth Batch of Gusu District Health Talent Training Project,No.GSWS2019060(to HS)。
文摘Intracerebral hemorrhage is a life-threatening condition with a high fatality rate and severe sequelae.However,there is currently no treatment available for intracerebral hemorrhage,unlike for other stroke subtypes.Recent studies have indicated that mitochondrial dysfunction and mitophagy likely relate to the pathophysiology of intracerebral hemorrhage.Mitophagy,or selective autophagy of mitochondria,is an essential pathway to preserve mitochondrial homeostasis by clearing up damaged mitochondria.Mitophagy markedly contributes to the reduction of secondary brain injury caused by mitochondrial dysfunction after intracerebral hemorrhage.This review provides an overview of the mitochondrial dysfunction that occurs after intracerebral hemorrhage and the underlying mechanisms regarding how mitophagy regulates it,and discusses the new direction of therapeutic strategies targeting mitophagy for intracerebral hemorrhage,aiming to determine the close connection between mitophagy and intracerebral hemorrhage and identify new therapies to modulate mitophagy after intracerebral hemorrhage.In conclusion,although only a small number of drugs modulating mitophagy in intracerebral hemorrhage have been found thus far,most of which are in the preclinical stage and require further investigation,mitophagy is still a very valid and promising therapeutic target for intracerebral hemorrhage in the long run.
基金supported by Key Project of China Rehabilitation Research Center,Nos.2022ZX-05,2018ZX-08(both to JB)。
文摘Traumatic spinal cord injury is a devastating disorder chara cterized by sensory,motor,and autonomic dysfunction that seve rely compromises an individual's ability to perform activities of daily living.These adve rse outcomes are closely related to the complex mechanism of spinal cord injury,the limited regenerative capacity of central neurons,and the inhibitory environment fo rmed by traumatic injury.Disruption to the microcirculation is an important pathophysiological mechanism of spinal cord injury.A number of therapeutic agents have been shown to improve the injury environment,mitigate secondary damage,and/or promote regeneration and repair.Among them,the spinal cord microcirculation has become an important target for the treatment of spinal cord injury.Drug inte rventions targeting the microcirculation can improve the microenvironment and promote recovery following spinal cord injury.These drugs target the structure and function of the spinal cord microcirculation and are essential for maintaining the normal function of spinal neuro ns,axons,and glial cells.This review discusses the pathophysiological role of spinal cord microcirculation in spinal cord injury,including its structure and histopathological changes.Further,it summarizes the progress of drug therapies targeting the spinal cord mic rocirc ulation after spinal cord injury.
基金supported by the Key Projects of the National Natural Science Foundation of China,No.11932013(to XC)Key Military Logistics Research Projects,No.B WJ21J002(to XC)+4 种基金the Key projects of the Special Zone for National Defence Innovation,No.21-163-12-ZT006002-13(to XC)the National Nature Science Foundation of China No.82272255(to XC)the National Defense Science and Technology Outstanding Youth Science Fund Program,No.2021-JCIQ-ZQ-035(to XC)the Scientific Research Innovation Team Project of Armed Police Characteristic Medical Center,No.KYCXTD0104(to ZL)the National Natural Science Foundation of China Youth Fund,No.82004467(to BC)。
文摘Spinal cord injury is a serious disease of the central nervous system involving irreversible nerve injury and various organ system injuries.At present,no effective clinical treatment exists.As one of the artificial hibernation techniques,mild hypothermia has preliminarily confirmed its clinical effect on spinal cord injury.However,its technical defects and barriers,along with serious clinical side effects,restrict its clinical application for spinal cord injury.Artificial hibernation is a futureoriented disruptive technology for human life support.It involves endogenous hibernation inducers and hibernation-related central neuromodulation that activate particular neurons,reduce the central constant temperature setting point,disrupt the normal constant body temperature,make the body adapt"to the external cold environment,and reduce the physiological resistance to cold stimulation.Thus,studying the artificial hibernation mechanism may help develop new treatment strategies more suitable for clinical use than the cooling method of mild hypothermia technology.This review introduces artificial hibernation technologies,including mild hypothermia technology,hibernation inducers,and hibernation-related central neuromodulation technology.It summarizes the relevant research on hypothermia and hibernation for organ and nerve protection.These studies show that artificial hibernation technologies have therapeutic significance on nerve injury after spinal co rd injury through inflammatory inhibition,immunosuppression,oxidative defense,and possible central protection.It also promotes the repair and protection of res pirato ry and digestive,cardiovascular,locomoto r,urinary,and endocrine systems.This review provides new insights for the clinical treatment of nerve and multiple organ protection after spinal cord injury thanks to artificial hibernation.At present,artificial hibernation technology is not mature,and research fa ces various challenges.Neve rtheless,the effort is wo rthwhile for the future development of medicine.
基金supported by the National Natural Science Foundation of China,Nos.82102295(to WG),82071339(to LG),82001119(to JH),and 81901994(to BZ).
文摘Studies have shown that C1q/tumor necrosis factor-related protein-6 (CTRP6) can alleviate renal ischemia/reperfusion injury in mice. However, its role in the brain remains poorly understood. To investigate the role of CTRP6 in cerebral ischemia/reperfusion injury associated with diabetes mellitus, a diabetes mellitus mouse model of cerebral ischemia/reperfusion injury was established by occlusion of the middle cerebral artery. To overexpress CTRP6 in the brain, an adeno-associated virus carrying CTRP6 was injected into the lateral ventricle. The result was that oxygen injury and inflammation in brain tissue were clearly attenuated, and the number of neurons was greatly reduced. In vitro experiments showed that CTRP6 knockout exacerbated oxidative damage, inflammatory reaction, and apoptosis in cerebral cortical neurons in high glucose hypoxia-simulated diabetic cerebral ischemia/reperfusion injury. CTRP6 overexpression enhanced the sirtuin-1 signaling pathway in diabetic brains after ischemia/reperfusion injury. To investigate the mechanism underlying these effects, we examined mice with depletion of brain tissue-specific sirtuin-1. CTRP6-like protection was achieved by activating the sirtuin-1 signaling pathway. Taken together, these results indicate that CTRP6 likely attenuates cerebral ischemia/reperfusion injury through activation of the sirtuin-1 signaling pathway.
基金supported in part by grants from the National Institute on Aging and National Eye Institute[EY030747(3R01EY030747-02S2)and EY031248(3R01EY03124802S1)]of the National Institutes of Health(to PK)Additional support by the Felix and Carmen Sabates Missouri Endowed Chair in Vision Researchthe Vision Research Foundation of Kansas City。
文摘Cannabinoids are lipophilic substances derived from Cannabis sativa that can exert a variety of effects in the human body.They have been studied in cellular and animal models as well as in human clinical trials for their therapeutic benefits in several human diseases.Some of these include central nervous system(CNS)diseases and dysfunctions such as forms of epilepsy,multiple sclerosis,Parkinson’s disease,pain and neuropsychiatric disorders.In addition,the endogenously produced cannabinoid lipids,endocannabinoids,are critical for normal CNS function,and if controlled or modified,may represent an additional therapeutic avenue for CNS diseases.This review discusses in vitro cellular,ex vivo tissue and in vivo animal model studies on cannabinoids and their utility as therapeutics in multiple CNS pathologies.In addition,the review provides an overview on the use of cannabinoids in human clinical trials for a variety of CNS diseases.Cannabinoids and endocannabinoids hold promise for use as disease modifiers and therapeutic agents for the prevention or treatment of neurodegenerative diseases and neurological disorders.
文摘In multiple sclerosis,only immunomodulato ry and immunosuppressive drugs are recognized as disease-modifying therapies.Howeve r,in recent years,several data from pre-clinical and clinical studies suggested a possible role of physical exe rcise as disease-modifying therapy in multiple sclerosis.Current evidence is sparse and often conflicting,and the mechanisms underlying the neuroprotective and antinflammatory role of exercise in multiple sclerosis have not been fully elucidated.Data,mainly derived from pre-clinical studies,suggest that exe rcise could enhance longterm potentiation and thus neuroplasticity,could reduce neuroinflammation and synaptopathy,and dampen astrogliosis and microgliosis.In humans,most trials focused on direct clinical and MRI outcomes,as investigating synaptic,neuroinflammato ry,and pathological changes is not straightfo rward compared to animal models.The present review analyzed current evidence and limitations in research concerning the potential disease-modifying therapy effects of exercise in multiple sclerosis in animal models and human studies.
基金funded by the Research Deanship of King Khalid University,No.GRP-215-43 (to FHA)Princess Nourah bint Abdulrohman University Researchers Supporting Project,No.PNURSP2023R110 (to AFD)。
文摘Memory loss and dementia are major public health concerns with a substantial economic burden.Oxidative stress has been shown to play a crucial role in the pathophysiology of hippocampal damage-induced memory impairment.To investigate whether the antioxidant and anti-inflammatory compound vanillyla cetone(zingerone) can protect against hippocampal damage and memory loss induced by cadmium chloride(CdCl_(2)) administration in rats,we explo red the potential involvement of the nuclear factor erythroid 2-related factor 2(Nrf2) signaling pathway,which is known to modulate oxidative stress and inflammation.Sixty healt hy male Wistar rats were divided into five groups:vehicle-treated(control),vanillylacetone,CdCl_(2),vanillylacetone+ CdCl_(2),vanillylacetone+ CdCl_(2)+ brusatol(a selective pharmacological N rf2inhibitor) groups.Vanillylacetone effectively attenuated CdCl_(2)-induced damage in the dental gyrus of the hippocampus and improved the memory function assessed by the Morris Water Maze test.Additionally,vanillylacetone markedly decreased the hippocampal tissue levels of inflammatory biomarkers(interleukin-6,tumor necrosis factor-α,intracellular cell adhesive molecules) and apoptosis biomarkers(Bax and cleaved caspase-3).The control and CdCl_(2)-treated groups treated with va nillylacetone showed reduced generation of reactive oxygen species,decreased malondialdehyde levels,and increased superoxide dismutase and glutathione activities,along with significant elevation of nuclear Nrf2 mRNA and protein expression in hippocampal tissue.All the protective effects of vanillylacetone we re substantially blocked by the co-administration of brusatol(a selective N rf2 inhibitor).Va nillylacetone mitigated hippocampal damage and memory loss induced by CdCl_(2),at least in part, by activating the nuclear transcription factor Nrf2.Additionally,vanillylacetone exerted its potent antioxidant and antiinflammatory actions.
基金supported by Karolinska Institutet in the form of a Board of Research Faculty Funded Career Positionby St.Erik Eye Hospital philanthropic donationsVetenskapsrådet 2022-00799.
文摘Pyrroloquinoline quinone is a quinone described as a cofactor for many bacterial dehydrogenases and is reported to exert an effect on metabolism in mammalian cells/tissues.Pyrroloquinoline quinone is present in the diet being available in foodstuffs,conferring the potential of this compound to be supplemented by dietary administration.Pyrroloquinoline quinone’s nutritional role in mammalian health is supported by the extensive deficits in reproduction,growth,and immunity resulting from the dietary absence of pyrroloquinoline quinone,and as such,pyrroloquinoline quinone has been considered as a“new vitamin.”Although the classification of pyrroloquinoline quinone as a vitamin needs to be properly established,the wide range of benefits for health provided has been reported in many studies.In this respect,pyrroloquinoline quinone seems to be particularly involved in regulating cell signaling pathways that promote metabolic and mitochondrial processes in many experimental contexts,thus dictating the rationale to consider pyrroloquinoline quinone as a vital compound for mammalian life.Through the regulation of different metabolic mechanisms,pyrroloquinoline quinone may improve clinical deficits where dysfunctional metabolism and mitochondrial activity contribute to induce cell damage and death.Pyrroloquinoline quinone has been demonstrated to have neuroprotective properties in different experimental models of neurodegeneration,although the link between pyrroloquinoline quinone-promoted metabolism and improved neuronal viability in some of such contexts is still to be fully elucidated.Here,we review the general properties of pyrroloquinoline quinone and its capacity to modulate metabolic and mitochondrial mechanisms in physiological contexts.In addition,we analyze the neuroprotective properties of pyrroloquinoline quinone in different neurodegenerative conditions and consider future perspectives for pyrroloquinoline quinone’s potential in health and disease.
基金supported by the National Natural Science Foundation of China,Nos.31800868(to YZ),32271037(to XL)and 82271090(to HZ).
文摘The therapeutic potential of Annexin A1,an important member of the Annexin superfamily,has become evident in results of experiments with multiple human systems and animal models.The anti-inflammatory and pro-resolving effects of Annexin A1 are characteristic of pathologies involving the nervous system.In this review,we initially describe the expression sites of Annexin A1,then outline the mechanisms by which Annexin A1 maintains the neurological homeostasis through either formyl peptide receptor 2 or other molecular approaches;and,finally,we discuss the neuroregenerative potential qualities of Annexin A1.The eye and the nervous system are anatomically and functionally connected,but the association between visual system pathogenesis,especially in the retina,and Annexin A1 alterations has not been well summarized.Therefore,we explain the beneficial effects of Annexin A1 for ocular diseases,especially for retinal diseases and glaucoma on the basis of published findings,and we explore present and future delivery strategies for Annexin A1 to the retina.
基金supported by the National Natural Science Foundation of China(32272319,31972020,32202032)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD).
文摘Two selenium(Se)-containing peptides from Se-enriched rice,TSeMMM and SeMDPGQQ,possess neuroprotective potency against lead(Pb2+)-induced cytotoxicity.However,the crosstalk between mRNA and microRNAs(miRNA)involved in the neuroprotection mechanism remains to be elucidated.In this study,RNA-sequencing and miRNA-sequencing were used to independently identify differentially expressed mRNAs and small RNAs profiles in Pb^(2+)-treated primary fetal rat cortical neurons and then the correlated miRNA-mRNA target pairs were obtained.It was found that 34 mRNAs related to oxidative phosphorylation could be reversed by pretreatment of TSeMMM and SeMDPGQQ.The protective effect of TSeMMM and SeMDPGQQ was mediated by upregulation of miR-107-3p,which downregulates the ATPase H+transporting V0 subunit e1(Atp6v0e1)mRNA level.A zebrafish model was applied to verify the relevance between the targeted mRNA and miRNA by real-time quantitative PCR.The results indicated that miR-107-3p was a potential therapeutic target to achieve neuroprotection of Se-containing peptides via stimulation of Atp6v0e1.
基金supported by the fund from Natural Science Foundation of Zhejiang Province,China(LY17C200017)。
文摘Hericium erinaceus is a nutritious edible and medicinal fungi,rich in a variety of functional active ingredients,with various physiological functions such as antioxidation,anticancer,and enhancing immunity.It is also effective in protecting the digestive system and preventing neurodegenerative diseases.In this review paper,we summarize the sources,structures and efficacies of the main active components in H.erinaceus fruiting body,mycelium,and culture media,and update the latest research progress on their biological activities and the related molecular mechanisms.Based on this information,we provide detailed challenges in current research,industrialization and information on the active ingredients of H.erinaceus.Perspectives for future studies and new applications of H.erinaceus are proposed.
文摘Taurine is a sulfur-containing,semi-essential amino acid that occurs naturally in the body.It alternates between inflammation and oxidative stress-mediated injury in various disease models.As part of its limiting functions,taurine also modulates endoplasmic reticulum stress,Ca^(2+)homeostasis,and neuronal activity at the molecular level.Taurine effectively protects against a number of neurological disorders,including stro ke,epilepsy,cerebral ischemia,memory dysfunction,and spinal cord injury.Although various therapies are available,effective management of these disorders remains a global challenge.Approximately 30 million people are affected worldwide.The design of taurine fo rmation co uld lead to potential drugs/supplements for the health maintenance and treatment of central nervous system disorders.The general neuroprotective effects of taurine and the various possible underlying mechanisms are discussed in this review.This article is a good resource for understanding the general effects of taurine on various diseases.Given the strong evidence for the neuropharmacological efficacy of taurine in various experimental paradigms,it is concluded that this molecule should be considered and further investigated as a potential candidate for neurotherapeutics,with emphasis on mechanism and clinical studies to determine efficacy.