Objective: The aim of the study was to observe the transfection efficacy of hepatitis B virus envelope (HBVE) and evaluate its ability as a gene transfer vector for liver cancer cells. Methods: To obtain HBVE, the...Objective: The aim of the study was to observe the transfection efficacy of hepatitis B virus envelope (HBVE) and evaluate its ability as a gene transfer vector for liver cancer cells. Methods: To obtain HBVE, the supematant fluid of HepG 2.2.15 cells was mixed with a PEG8000 solution for concentration and was inactivated by β-propiolactone. The acquired HBVE was used to pack plRES2-EGFP to test its package ability. Then, we examined its quantity and quality with ELISA, PCR, SDS-PAGE and electron microscopy. The plRES2-EGFP was packed with HBVE and obtained the product HBVE-GFP. The plRES2-EGFP was packed with liposome and obtained the product liposome-GFP. HBVE-GFP and liposome-GFP were used to transfer HepG 2 cells to study the transfection efficiency. HBVE-GFP was used to transfer HepG 2, A549, HeLa and FB cells to study the targeting ability. The green fluorescent protein (GFP) expression was observed under a fluorescent microscope. The rate of GFP positive cells was determined by flow cytometry. Results: 1. The acquired HBVE could retain the surface protein HBsAg + pre S1 + pre S2 and had no virus DNA. It had good package ability for plRES2-EGFP. 2. Transfection efficiency: The GFP could be observed in both the liposome group and HBVE group under the fluorescent microscope. But the HBVE group had a higher fluorescent intensity than liposome group. The transfection rate of liposome group was 49.97% + 2.37% while the HBVE group was 70.65% + 3.15% and the fluorescent intensity of the HBVE group was 3-4 times (P = 0.000) for liposome group with the determination of flow cytometry. 3. Targeting ability: The GFP could be observed in the four groups under the fluorescent microscope. The HepG 2 group had the highest fluorescent intensity among the four groups. The transfection rate of HepG 2 group was 71.35% + 0.03% which was highly expressed than other groups (P = 0.000) and the fluorescent intensity of the HepG 2 group was 2-3 times (P = 0.000) for the other 3 groups with the determination of flow cytometry. Conclusion: HBVE can be constructed successfully with the methods of PEG8000 and β-propiolactone from the supernatant fluid of HepG 22.15 cells. The HBVE can be a candidate gene transfer vector for liver cancer cells.展开更多
Objective: The aim of this study was to investigate whether astrecyte elevated gene 1 (AEG1) regulates COX-2 expression in human hepatoma HepG2 cells and related pathways involved in this process. Methods: Human h...Objective: The aim of this study was to investigate whether astrecyte elevated gene 1 (AEG1) regulates COX-2 expression in human hepatoma HepG2 cells and related pathways involved in this process. Methods: Human hepatoma HepG2 cells were transfected with pcDNA3.1(-)-AEG1 plasmid or psilencer2.0-AEGl-shRNA1 plasmid to up/down-regulate AEG1 expression, pcDNA3.1(-) and psilencer 2.0 empty vector plasmids were transfected respectively as control. Real-time RT-PCR was carried out to measure the expression levels of AEG1 and COX-2 mRNA. The expression levels of AEG1 and COX-2 protein were detected by Western blot. NF-KB signaling was blocked by PDTC, and AP-1 signaling was blocked by curcumin. Results: AEG1 mRNA and protein levels were increased after pcDNA3.1(-)-AEG1 transfection, and decreased after psilencer2.0-AEGl-shRNAs transfection. COX-2 mRNA and protein levels were increased in AEGl-overexpressing cells and decreased in AEGl-knockdown cells. Phosphorylations of p65 and c-jun were up-regulated in AEGl-overexpressing cells. Both PDTC and curoumin reduced COX-2 expression in HepG2 cells with AEG1 overexpression. Conclusion: AEG1- overexpressing and -knockdown HepG2 cells are established successfully. AEG1 could induce COX-2 expression though activating NF-KB and AP-1 in human hepatoma HepG2 cells.展开更多
Both viral diseases and cancer account for a large proportion of serious health problems. Viral infection and cancer are biologically and medically correlated and in many ways share common cellular pathways that lead ...Both viral diseases and cancer account for a large proportion of serious health problems. Viral infection and cancer are biologically and medically correlated and in many ways share common cellular pathways that lead to disease development or progression. Better understanding how these signaling events are specifically activated by different pathogenic stimuli and how they activate different downstream transcriptions in response to these stimuli at high specificity and efficiency will provide a new molecular basis for the development of novel disease biomarkers and therapeutic or preventive targets against both classes of diseases. Research in our laboratory has been prompted to investigate the regulation and modes of action of these pathways, with a more intensive focus on the NF-κB signaling, in the settings of severe or oncogenic viral infection as well as cancer development. It is hoped that our research will lead to eventual clinical application of biomarkers derived from these signaling pathways.展开更多
OBJECTIVE The greatest challenge in chemotherapy of ischemic stroke is the construction a suitable delivery system to overcome the poor physicochemical properties of drug and its low permeability across the blood brai...OBJECTIVE The greatest challenge in chemotherapy of ischemic stroke is the construction a suitable delivery system to overcome the poor physicochemical properties of drug and its low permeability across the blood brain barrier(BBB).METHODS In the present study,dendrimer,polyamidoamine(PAMAM),was synthesized as the nano-drug carriers.Angiopep-2,which has been proved excellent ability to cross the BBB,was exploited as the targeting ligand to conjugate PAMAM via bifunctional polyethylene glycol(PEG).Then scutellarin(STA)was encapsulated into the functionalized nanoparticles(NPs)to formulate Angiopep-2 modified STA-loaded PEG-PAMAM NPs.Ischemic stroke model was established to evaluate the treatment efficacy and protective mechanism of Angiopep-2-STA-PEG-PAMAM NPs.RESULTS The pharmacokinetics and biodistribu-tion demonstrated that Angiopep-2-STA-PEG-PAMAM NPs exhibited significantly higher plasma concentration from 1 h to 10 h after intravenous administration and improve accumulation in brain(4.7-fold)compared with STA solution.Moreover,prolonged elimination half-life(4.8-fold)and lower clearance(3.4-fold)were observed.The brain uptake study of 6-coumarin confirmed that Angiopep-2-PEG-PAMAM NPs possessed better brain targeting efficacy(3.2-fold)than PEG-PAMAM NPs.Angiopep-2-STA-PEG-PAMAM NPs obviously ameliorated infarct volume,neurological deficit,histopathological severity and neuronal apoptosis.In addition,Angiopep-2-STA-PEG-PAMAM NPs markedly inhibited the calcium content and the levels of IL-12p40,IL-13,IL-17 and IL-23.Furthermore,Angiopep-2-STA-PEG-PAMAM NPs significantly decreased the m RNA and protein expressions of HMGB1,TLR2,TLR4,TLR5,My D88,TRIF,TRAM,IRAK-4,TRAF6,IкBα,IKKβand NF-кBp65.CONCLUSION The results suggested that Angiopep-2modified scutellarin-loaded PEG-PAMAM nanocarriers possessed remarkable neuroprotective effects on ischemic stroke through modulation of inflammatory cascades and HMGB1/TLRs/MyD 88-induced NF-κB activation pathways.展开更多
Objective: To construct and apply a replacement targeting vector for mouse coagulation factor IX(mFIX) gene in embryonic stem (ES) cells. Methods: Based on the cloning and structural analysis of the genomic DNA fragme...Objective: To construct and apply a replacement targeting vector for mouse coagulation factor IX(mFIX) gene in embryonic stem (ES) cells. Methods: Based on the cloning and structural analysis of the genomic DNA fragment of coagulation factor IX gene from 129Sv mouse genomic DNA A phage library, PMFIXDEL plasmid was designed with positive-negative-selection (PNS) strategy, and constructed with commonmolecular cloning techniques. Structure of PMFIXDEL was identified by PCR and restriction analysis. Afterelectroporation with the linearized PMFIXDEL DNA, transfected ES cells were cultured in G418/GANC drugselection medium. The recombination efficacy of this vector was tested. Results: The main components ofPMFIXDEL were two copies of negative selection gene (HSV-tk expression cassette), a positive selectiongene (Neo expression cassette), long and short homologous fragments and plasmid backbone. The introduction of negative selection gene (HSV-tk ) into the construct resulted in 24-fold increase of selection.Conclusion: An effective replacement vector for mFIX gene targeting was constructed and applied in ES cell.展开更多
AIM: To explore the expression effect of mutated IκBα transfection on multidrug resistance gene (MDR-1) in hilar cholangiocarcinoma cells by inhibiting the activity of nuclear transcription factor-κB (NF-κB). METH...AIM: To explore the expression effect of mutated IκBα transfection on multidrug resistance gene (MDR-1) in hilar cholangiocarcinoma cells by inhibiting the activity of nuclear transcription factor-κB (NF-κB). METHODS: We used the mutated IicBa plasmid to transfect QBC939HCVC+ cells and QBC939 cells, and electrophoretic gel mobility shift assay (EMSA) to detect the binding activity of NF-κB DNA and the effect of the transfrecting mutated IκBα plasmid on multidrug resistance gene (MDR-1) in hilar cholangiocarcinoma cells and its expression protein (P-GP). RESULTS: Plasmid DNA was digested by restriction enzymes Xbal and Hand III, and its product after electrophoresis showed two bands with a big difference in molecular weight, with a size of 4.9 kb and 1.55 kb respectively, which indicated that the carrier was successfully constructed and digested with enzymes. The radioactivity accumulation of QBC939HCVC+ and QBC939 cells transfected with mutated IκBα plasmid was significantly lower than that of the control group not transfected with mutated IκBα plasmid. Double densimeter scanning showed that the relative signal density between the tansfection group and non-transfection group was significantly different, which proved that the mutated IκBα plasmid could inhibit the binding activity of NF-KB DNA in hilar cholangiocarcinoma cells. Compared to control group not transfected with m IκBα plasmid, the expression level of MDR-1mRNA in the QBC939 and QBC939HCVC+ cells transfected with mutated IκBα plasmid was lower. The expression intensity of P-GP protein in QBC939 and QBC939HCVC+ cells transfected with mutated IκBα was significantly lower than that of the control group not transfected with mutated IκBα plasmid. CONCLUSION: The mutated IκBα plasmid transfection can markedly reverse the multidrug resistance of hilar cholangiocarcinoma cells. Interruption of NF-κB activity may become a new target in gene therapy for hilar cholangiocar-cinogenesic carcinoma.展开更多
Objective:To observe the reversion of multi-drug resistance by proteasome inhibitor bortezomib in K562/DNR cell line and to analyze the possible mechanism of reversion of multidrug-resistance.Methods:MTT method was ...Objective:To observe the reversion of multi-drug resistance by proteasome inhibitor bortezomib in K562/DNR cell line and to analyze the possible mechanism of reversion of multidrug-resistance.Methods:MTT method was used to determine the drug resistance of K562/DNR cells and the cellular toxicity of bortezomib.K562/DNR cells were cultured for 12 hours,24 hours and 36 hours with 100 μg/ml DNR only or plus 4 μg/L bortezomib.The expressions of NF-κB,IκB and P-gp of K562/DNR were detected with Western blot method,the activity of NF-κB was tested by ELISA method and the apoptosis rate was observed in each group respectively.Results:The IC50 of DNR on cells of K562/S and K562/DNR groups were 1.16 μg/ml and 50.43 μg/mL,respectively.The drug-resistant fold was 43.47.The IC10 of PS-341 on Cell strain K562/DNR was 4 μg/L.Therefore,4 μg/L was selected as the concentration for PS-341 to reverse drug-resistance in this study.DNR induced down-regulation of IκB expression,up-regulation of NF-κB and P-gp expression.After treatment with PS-341,a proteasome inhibitor,the IκB degradation was inhibited,IκB expression increased,NF-κB and P-gp expression decreased in a time dependent manner.Compared to DNR group,the NF-κB p65 activity of DNR+PS-341 group was decreased.Compared to corresponding DNR group,DNR induced apoptosis rate increases after addition of PS-341 in a time dependent manner.Conclusion:Proteasome inhibitor bortezomib can convert the leukemia cell drug resistance.The mechanism may be that bortezomib decreases the degradation of IκB and the expression of NF-κB and P-gp,therefore induces the apoptosis of multi-drug resistant cells.展开更多
基金Supported by a grant from the National Natural Sciences Foundation of China No 30100189
文摘Objective: The aim of the study was to observe the transfection efficacy of hepatitis B virus envelope (HBVE) and evaluate its ability as a gene transfer vector for liver cancer cells. Methods: To obtain HBVE, the supematant fluid of HepG 2.2.15 cells was mixed with a PEG8000 solution for concentration and was inactivated by β-propiolactone. The acquired HBVE was used to pack plRES2-EGFP to test its package ability. Then, we examined its quantity and quality with ELISA, PCR, SDS-PAGE and electron microscopy. The plRES2-EGFP was packed with HBVE and obtained the product HBVE-GFP. The plRES2-EGFP was packed with liposome and obtained the product liposome-GFP. HBVE-GFP and liposome-GFP were used to transfer HepG 2 cells to study the transfection efficiency. HBVE-GFP was used to transfer HepG 2, A549, HeLa and FB cells to study the targeting ability. The green fluorescent protein (GFP) expression was observed under a fluorescent microscope. The rate of GFP positive cells was determined by flow cytometry. Results: 1. The acquired HBVE could retain the surface protein HBsAg + pre S1 + pre S2 and had no virus DNA. It had good package ability for plRES2-EGFP. 2. Transfection efficiency: The GFP could be observed in both the liposome group and HBVE group under the fluorescent microscope. But the HBVE group had a higher fluorescent intensity than liposome group. The transfection rate of liposome group was 49.97% + 2.37% while the HBVE group was 70.65% + 3.15% and the fluorescent intensity of the HBVE group was 3-4 times (P = 0.000) for liposome group with the determination of flow cytometry. 3. Targeting ability: The GFP could be observed in the four groups under the fluorescent microscope. The HepG 2 group had the highest fluorescent intensity among the four groups. The transfection rate of HepG 2 group was 71.35% + 0.03% which was highly expressed than other groups (P = 0.000) and the fluorescent intensity of the HepG 2 group was 2-3 times (P = 0.000) for the other 3 groups with the determination of flow cytometry. Conclusion: HBVE can be constructed successfully with the methods of PEG8000 and β-propiolactone from the supernatant fluid of HepG 22.15 cells. The HBVE can be a candidate gene transfer vector for liver cancer cells.
基金Supported by grants from the National Science Foundation of China (No.81070333)the Natural Science Foundation of Hubei Province of China (No.2012FFB02318)
文摘Objective: The aim of this study was to investigate whether astrecyte elevated gene 1 (AEG1) regulates COX-2 expression in human hepatoma HepG2 cells and related pathways involved in this process. Methods: Human hepatoma HepG2 cells were transfected with pcDNA3.1(-)-AEG1 plasmid or psilencer2.0-AEGl-shRNA1 plasmid to up/down-regulate AEG1 expression, pcDNA3.1(-) and psilencer 2.0 empty vector plasmids were transfected respectively as control. Real-time RT-PCR was carried out to measure the expression levels of AEG1 and COX-2 mRNA. The expression levels of AEG1 and COX-2 protein were detected by Western blot. NF-KB signaling was blocked by PDTC, and AP-1 signaling was blocked by curcumin. Results: AEG1 mRNA and protein levels were increased after pcDNA3.1(-)-AEG1 transfection, and decreased after psilencer2.0-AEGl-shRNAs transfection. COX-2 mRNA and protein levels were increased in AEGl-overexpressing cells and decreased in AEGl-knockdown cells. Phosphorylations of p65 and c-jun were up-regulated in AEGl-overexpressing cells. Both PDTC and curoumin reduced COX-2 expression in HepG2 cells with AEG1 overexpression. Conclusion: AEG1- overexpressing and -knockdown HepG2 cells are established successfully. AEG1 could induce COX-2 expression though activating NF-KB and AP-1 in human hepatoma HepG2 cells.
基金National Natural Science Foundation of China (30872930)Guangdong Provincial Natural Science Foundation (2006Z3-E4081and 2007A03260001)Science and Technology Department of Zhuhai Municipality (PC20071076)
文摘Both viral diseases and cancer account for a large proportion of serious health problems. Viral infection and cancer are biologically and medically correlated and in many ways share common cellular pathways that lead to disease development or progression. Better understanding how these signaling events are specifically activated by different pathogenic stimuli and how they activate different downstream transcriptions in response to these stimuli at high specificity and efficiency will provide a new molecular basis for the development of novel disease biomarkers and therapeutic or preventive targets against both classes of diseases. Research in our laboratory has been prompted to investigate the regulation and modes of action of these pathways, with a more intensive focus on the NF-κB signaling, in the settings of severe or oncogenic viral infection as well as cancer development. It is hoped that our research will lead to eventual clinical application of biomarkers derived from these signaling pathways.
基金The project supported by National Natural Science Foundation of China(NSFC 21476054)the Natural Science Foundation of Heilongjiang Province(B201407)
文摘OBJECTIVE The greatest challenge in chemotherapy of ischemic stroke is the construction a suitable delivery system to overcome the poor physicochemical properties of drug and its low permeability across the blood brain barrier(BBB).METHODS In the present study,dendrimer,polyamidoamine(PAMAM),was synthesized as the nano-drug carriers.Angiopep-2,which has been proved excellent ability to cross the BBB,was exploited as the targeting ligand to conjugate PAMAM via bifunctional polyethylene glycol(PEG).Then scutellarin(STA)was encapsulated into the functionalized nanoparticles(NPs)to formulate Angiopep-2 modified STA-loaded PEG-PAMAM NPs.Ischemic stroke model was established to evaluate the treatment efficacy and protective mechanism of Angiopep-2-STA-PEG-PAMAM NPs.RESULTS The pharmacokinetics and biodistribu-tion demonstrated that Angiopep-2-STA-PEG-PAMAM NPs exhibited significantly higher plasma concentration from 1 h to 10 h after intravenous administration and improve accumulation in brain(4.7-fold)compared with STA solution.Moreover,prolonged elimination half-life(4.8-fold)and lower clearance(3.4-fold)were observed.The brain uptake study of 6-coumarin confirmed that Angiopep-2-PEG-PAMAM NPs possessed better brain targeting efficacy(3.2-fold)than PEG-PAMAM NPs.Angiopep-2-STA-PEG-PAMAM NPs obviously ameliorated infarct volume,neurological deficit,histopathological severity and neuronal apoptosis.In addition,Angiopep-2-STA-PEG-PAMAM NPs markedly inhibited the calcium content and the levels of IL-12p40,IL-13,IL-17 and IL-23.Furthermore,Angiopep-2-STA-PEG-PAMAM NPs significantly decreased the m RNA and protein expressions of HMGB1,TLR2,TLR4,TLR5,My D88,TRIF,TRAM,IRAK-4,TRAF6,IкBα,IKKβand NF-кBp65.CONCLUSION The results suggested that Angiopep-2modified scutellarin-loaded PEG-PAMAM nanocarriers possessed remarkable neuroprotective effects on ischemic stroke through modulation of inflammatory cascades and HMGB1/TLRs/MyD 88-induced NF-κB activation pathways.
文摘Objective: To construct and apply a replacement targeting vector for mouse coagulation factor IX(mFIX) gene in embryonic stem (ES) cells. Methods: Based on the cloning and structural analysis of the genomic DNA fragment of coagulation factor IX gene from 129Sv mouse genomic DNA A phage library, PMFIXDEL plasmid was designed with positive-negative-selection (PNS) strategy, and constructed with commonmolecular cloning techniques. Structure of PMFIXDEL was identified by PCR and restriction analysis. Afterelectroporation with the linearized PMFIXDEL DNA, transfected ES cells were cultured in G418/GANC drugselection medium. The recombination efficacy of this vector was tested. Results: The main components ofPMFIXDEL were two copies of negative selection gene (HSV-tk expression cassette), a positive selectiongene (Neo expression cassette), long and short homologous fragments and plasmid backbone. The introduction of negative selection gene (HSV-tk ) into the construct resulted in 24-fold increase of selection.Conclusion: An effective replacement vector for mFIX gene targeting was constructed and applied in ES cell.
基金Supported by China Postdoctoral Science Foundation ,No. 2002031291
文摘AIM: To explore the expression effect of mutated IκBα transfection on multidrug resistance gene (MDR-1) in hilar cholangiocarcinoma cells by inhibiting the activity of nuclear transcription factor-κB (NF-κB). METHODS: We used the mutated IicBa plasmid to transfect QBC939HCVC+ cells and QBC939 cells, and electrophoretic gel mobility shift assay (EMSA) to detect the binding activity of NF-κB DNA and the effect of the transfrecting mutated IκBα plasmid on multidrug resistance gene (MDR-1) in hilar cholangiocarcinoma cells and its expression protein (P-GP). RESULTS: Plasmid DNA was digested by restriction enzymes Xbal and Hand III, and its product after electrophoresis showed two bands with a big difference in molecular weight, with a size of 4.9 kb and 1.55 kb respectively, which indicated that the carrier was successfully constructed and digested with enzymes. The radioactivity accumulation of QBC939HCVC+ and QBC939 cells transfected with mutated IκBα plasmid was significantly lower than that of the control group not transfected with mutated IκBα plasmid. Double densimeter scanning showed that the relative signal density between the tansfection group and non-transfection group was significantly different, which proved that the mutated IκBα plasmid could inhibit the binding activity of NF-KB DNA in hilar cholangiocarcinoma cells. Compared to control group not transfected with m IκBα plasmid, the expression level of MDR-1mRNA in the QBC939 and QBC939HCVC+ cells transfected with mutated IκBα plasmid was lower. The expression intensity of P-GP protein in QBC939 and QBC939HCVC+ cells transfected with mutated IκBα was significantly lower than that of the control group not transfected with mutated IκBα plasmid. CONCLUSION: The mutated IκBα plasmid transfection can markedly reverse the multidrug resistance of hilar cholangiocarcinoma cells. Interruption of NF-κB activity may become a new target in gene therapy for hilar cholangiocar-cinogenesic carcinoma.
基金supported by Educational Commission of Liaoning Province, China (No. 20060985)
文摘Objective:To observe the reversion of multi-drug resistance by proteasome inhibitor bortezomib in K562/DNR cell line and to analyze the possible mechanism of reversion of multidrug-resistance.Methods:MTT method was used to determine the drug resistance of K562/DNR cells and the cellular toxicity of bortezomib.K562/DNR cells were cultured for 12 hours,24 hours and 36 hours with 100 μg/ml DNR only or plus 4 μg/L bortezomib.The expressions of NF-κB,IκB and P-gp of K562/DNR were detected with Western blot method,the activity of NF-κB was tested by ELISA method and the apoptosis rate was observed in each group respectively.Results:The IC50 of DNR on cells of K562/S and K562/DNR groups were 1.16 μg/ml and 50.43 μg/mL,respectively.The drug-resistant fold was 43.47.The IC10 of PS-341 on Cell strain K562/DNR was 4 μg/L.Therefore,4 μg/L was selected as the concentration for PS-341 to reverse drug-resistance in this study.DNR induced down-regulation of IκB expression,up-regulation of NF-κB and P-gp expression.After treatment with PS-341,a proteasome inhibitor,the IκB degradation was inhibited,IκB expression increased,NF-κB and P-gp expression decreased in a time dependent manner.Compared to DNR group,the NF-κB p65 activity of DNR+PS-341 group was decreased.Compared to corresponding DNR group,DNR induced apoptosis rate increases after addition of PS-341 in a time dependent manner.Conclusion:Proteasome inhibitor bortezomib can convert the leukemia cell drug resistance.The mechanism may be that bortezomib decreases the degradation of IκB and the expression of NF-κB and P-gp,therefore induces the apoptosis of multi-drug resistant cells.